- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | FUMEEC| FUMEAuthors:J. Bedia;
J. Bedia
J. Bedia in OpenAIRES. Herrera;
S. Herrera
S. Herrera in OpenAIRED. San Martín;
D. San Martín
D. San Martín in OpenAIREN. Koutsias;
+1 AuthorsN. Koutsias
N. Koutsias in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIRES. Herrera;
S. Herrera
S. Herrera in OpenAIRED. San Martín;
D. San Martín
D. San Martín in OpenAIREN. Koutsias;
N. Koutsias
N. Koutsias in OpenAIREJ. M. Gutiérrez;
J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREhandle: 10261/93835
The effect of climate change on wildfires constitutes a serious concern in fire-prone regions with complex fire behavior such as the Mediterranean. The coarse resolution of future climate projections produced by General Circulation Models (GCMs) prevents their direct use in local climate change studies. Statistical downscaling techniques bridge this gap using empirical models that link the synoptic-scale variables from GCMs to the local variables of interest (using e.g. data from meteorological stations). In this paper, we investigate the application of statistical downscaling methods in the context of wildfire research, focusing in the Canadian Fire Weather Index (FWI), one of the most popular fire danger indices. We target on the Iberian Peninsula and Greece and use historical observations of the FWI meteorological drivers (temperature, humidity, wind and precipitation) in several local stations. In particular, we analyze the performance of the analog method, which is a convenient first choice for this problem since it guarantees physical and spatial consistency of the downscaled variables, regardless of their different statistical properties. First we validate the method in perfect model conditions using ERA-Interim reanalysis data. Overall, not all variables are downscaled with the same accuracy, with the poorest results (with spatially averaged daily correlations below 0.5) obtained for wind, followed by precipitation. Consequently, those FWI components mostly relying on those parameters exhibit the poorest results. However, those deficiencies are compensated in the resulting FWI values due to the overall high performance of temperature and relative humidity. Then, we check the suitability of the method to downscale control projections (20C3M scenario) from a single GCM (the ECHAM5 model) and compute the downscaled future fire danger projections for the transient A1B scenario. In order to detect problems due to non-stationarities related to climate change, we compare the results with those obtained with a Regional Climate Model (RCM) driven by the same GCM. Although both statistical and dynamical projections exhibit a similar pattern of risk increment in the first half of the 21st century, they diverge during the second half of the century. As a conclusion, we advocate caution in the use of projections for this last period, regardless of the regionalization technique applied. © 2013 Springer Science+Business Media Dordrecht. This work was partly funded by European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements 243888 (FUME Project) and from Spanish Ministry MICINN under grant EXTREMBLES (CGL2010-21869). Peer Reviewed
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-0787-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 175visibility views 175 download downloads 194 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-0787-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | FUMEEC| FUMEAuthors:J. Bedia;
J. Bedia
J. Bedia in OpenAIRES. Herrera;
S. Herrera
S. Herrera in OpenAIRED. San Martín;
D. San Martín
D. San Martín in OpenAIREN. Koutsias;
+1 AuthorsN. Koutsias
N. Koutsias in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIRES. Herrera;
S. Herrera
S. Herrera in OpenAIRED. San Martín;
D. San Martín
D. San Martín in OpenAIREN. Koutsias;
N. Koutsias
N. Koutsias in OpenAIREJ. M. Gutiérrez;
J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREhandle: 10261/93835
The effect of climate change on wildfires constitutes a serious concern in fire-prone regions with complex fire behavior such as the Mediterranean. The coarse resolution of future climate projections produced by General Circulation Models (GCMs) prevents their direct use in local climate change studies. Statistical downscaling techniques bridge this gap using empirical models that link the synoptic-scale variables from GCMs to the local variables of interest (using e.g. data from meteorological stations). In this paper, we investigate the application of statistical downscaling methods in the context of wildfire research, focusing in the Canadian Fire Weather Index (FWI), one of the most popular fire danger indices. We target on the Iberian Peninsula and Greece and use historical observations of the FWI meteorological drivers (temperature, humidity, wind and precipitation) in several local stations. In particular, we analyze the performance of the analog method, which is a convenient first choice for this problem since it guarantees physical and spatial consistency of the downscaled variables, regardless of their different statistical properties. First we validate the method in perfect model conditions using ERA-Interim reanalysis data. Overall, not all variables are downscaled with the same accuracy, with the poorest results (with spatially averaged daily correlations below 0.5) obtained for wind, followed by precipitation. Consequently, those FWI components mostly relying on those parameters exhibit the poorest results. However, those deficiencies are compensated in the resulting FWI values due to the overall high performance of temperature and relative humidity. Then, we check the suitability of the method to downscale control projections (20C3M scenario) from a single GCM (the ECHAM5 model) and compute the downscaled future fire danger projections for the transient A1B scenario. In order to detect problems due to non-stationarities related to climate change, we compare the results with those obtained with a Regional Climate Model (RCM) driven by the same GCM. Although both statistical and dynamical projections exhibit a similar pattern of risk increment in the first half of the 21st century, they diverge during the second half of the century. As a conclusion, we advocate caution in the use of projections for this last period, regardless of the regionalization technique applied. © 2013 Springer Science+Business Media Dordrecht. This work was partly funded by European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements 243888 (FUME Project) and from Spanish Ministry MICINN under grant EXTREMBLES (CGL2010-21869). Peer Reviewed
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-0787-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 175visibility views 175 download downloads 194 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-0787-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | FUMEEC| FUMEAuthors:J. Bedia;
J. Bedia
J. Bedia in OpenAIRES. Herrera;
A. Camia;S. Herrera
S. Herrera in OpenAIREJ. M. Moreno;
+1 AuthorsJ. M. Moreno
J. M. Moreno in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIRES. Herrera;
A. Camia;S. Herrera
S. Herrera in OpenAIREJ. M. Moreno;
J. M. Moreno
J. M. Moreno in OpenAIREJ. M. Gutiérrez;
J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREhandle: 10261/93820
We present future fire danger scenarios for the countries bordering the Mediterranean areas of Europe and north Africa building on a multi-model ensemble of state-of-the-art regional climate projections from the EU-funded project ENSEMBLES. Fire danger is estimated using the Canadian Forest Fire Weather Index (FWI) System and a related set of indices. To overcome some of the limitations of ENSEMBLES data for their application on the FWI System?recently highlighted in a previous study by Herrera et al. (Clim Chang 118:827?840, 2013)?we used an optimal proxy variable combination. A robust assessment of future fire danger projections is undertaken by disentangling the climate change signal from the uncertainty derived from the multi-model ensemble, unveiling a positive signal of fire danger potential over large areas of the Mediterranean. The increase in the fire danger signal is accentuated towards the latest part of the transient period, thus pointing to an elevated fire potential in the region with time. The fire-climate links under present and future conditions are further discussed building upon observed climate data and burned area records along a representative climatic gradient within the study region. The research leading to these results has received funding from the EXTREMBLES project (CGL2010-21869) funded by the Spanish R&D programme and from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 243888 (FUME Project). The authors acknowledge the RCM data sets from the EU-FP6 project ENSEMBLES (http://ensemblesrt3.dmi.dk) and would also like to thank Erik van Meijgaard from the Royal Netherlands Meteorological Institute (KNMI) for making available ENSEMBLES RACMO2 climate model output verifying at 12:00 UTC. We are also grateful to Jesus Fernandez and three anonymous reviewers for their insightful comments that greatly contributed to the improvement of the original manuscript.
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-1005-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 268visibility views 268 download downloads 313 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-1005-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | FUMEEC| FUMEAuthors:J. Bedia;
J. Bedia
J. Bedia in OpenAIRES. Herrera;
A. Camia;S. Herrera
S. Herrera in OpenAIREJ. M. Moreno;
+1 AuthorsJ. M. Moreno
J. M. Moreno in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIRES. Herrera;
A. Camia;S. Herrera
S. Herrera in OpenAIREJ. M. Moreno;
J. M. Moreno
J. M. Moreno in OpenAIREJ. M. Gutiérrez;
J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREhandle: 10261/93820
We present future fire danger scenarios for the countries bordering the Mediterranean areas of Europe and north Africa building on a multi-model ensemble of state-of-the-art regional climate projections from the EU-funded project ENSEMBLES. Fire danger is estimated using the Canadian Forest Fire Weather Index (FWI) System and a related set of indices. To overcome some of the limitations of ENSEMBLES data for their application on the FWI System?recently highlighted in a previous study by Herrera et al. (Clim Chang 118:827?840, 2013)?we used an optimal proxy variable combination. A robust assessment of future fire danger projections is undertaken by disentangling the climate change signal from the uncertainty derived from the multi-model ensemble, unveiling a positive signal of fire danger potential over large areas of the Mediterranean. The increase in the fire danger signal is accentuated towards the latest part of the transient period, thus pointing to an elevated fire potential in the region with time. The fire-climate links under present and future conditions are further discussed building upon observed climate data and burned area records along a representative climatic gradient within the study region. The research leading to these results has received funding from the EXTREMBLES project (CGL2010-21869) funded by the Spanish R&D programme and from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 243888 (FUME Project). The authors acknowledge the RCM data sets from the EU-FP6 project ENSEMBLES (http://ensemblesrt3.dmi.dk) and would also like to thank Erik van Meijgaard from the Royal Netherlands Meteorological Institute (KNMI) for making available ENSEMBLES RACMO2 climate model output verifying at 12:00 UTC. We are also grateful to Jesus Fernandez and three anonymous reviewers for their insightful comments that greatly contributed to the improvement of the original manuscript.
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-1005-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 268visibility views 268 download downloads 313 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-1005-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors:M. D. Frías;
M. D. Frías
M. D. Frías in OpenAIREJesús Fernández;
Jesús Fernández
Jesús Fernández in OpenAIREDaniel San-Martín;
Daniel San-Martín
Daniel San-Martín in OpenAIRERodrigo Manzanas;
+8 AuthorsRodrigo Manzanas
Rodrigo Manzanas in OpenAIREM. D. Frías;
M. D. Frías
M. D. Frías in OpenAIREJesús Fernández;
Jesús Fernández
Jesús Fernández in OpenAIREDaniel San-Martín;
Daniel San-Martín
Daniel San-Martín in OpenAIRERodrigo Manzanas;
Rodrigo Manzanas
Rodrigo Manzanas in OpenAIREJoaquín Bedia;
Joaquín Bedia
Joaquín Bedia in OpenAIREAntonio S. Cofiño;
Antonio S. Cofiño
Antonio S. Cofiño in OpenAIREMaialen Iturbide;
Maialen Iturbide;Maialen Iturbide
Maialen Iturbide in OpenAIREEzequiel Cimadevilla;
José M. Gutiérrez;Ezequiel Cimadevilla
Ezequiel Cimadevilla in OpenAIREJorge Baño-Medina;
Jorge Baño-Medina
Jorge Baño-Medina in OpenAIRESixto Herrera;
Sixto Herrera
Sixto Herrera in OpenAIREhandle: 10261/213738
Climate-driven sectoral applications commonly require different types of climate data (e.g. observations, reanalysis, climate change projections) from different providers. Data access, harmonization and post-processing (e.g. bias correction) are time-consuming error-prone tasks requiring different specialized software tools at each stage of the data workflow, thus hindering reproducibility. Here we introduce climate4R, an R-based climate services oriented framework tailored to the needs of the vulnerability and impact assessment community that integrates in the same computing environment harmonized data access, post-processing, visualization and a provenance metadata model for traceability and reproducibility of results. climate4R allows accessing local and remote (OPeNDAP) data sources, such as the Santander User Data Gateway (UDG), a THREDDS-based service including a wide catalogue of popular datasets (e.g. ERA-Interim, CORDEX, etc.). This provides a unique comprehensive open framework for end-to-end sectoral reproducible applications. All the packages, data and documentation for reproducing the experiments in this paper are available from http://www.meteo.unican.es/climate4R. This work has been funded by the Spanish R+D Program of the Ministry of Economy and Competitiveness, through grants MULTI-SDM (CGL2015-66583-R) and INSIGNIA (CGL2016-79210-R), co-funded by ERDF/FEDER.
Environmental Modell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2018.09.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 199visibility views 199 download downloads 799 Powered bymore_vert Environmental Modell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2018.09.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors:M. D. Frías;
M. D. Frías
M. D. Frías in OpenAIREJesús Fernández;
Jesús Fernández
Jesús Fernández in OpenAIREDaniel San-Martín;
Daniel San-Martín
Daniel San-Martín in OpenAIRERodrigo Manzanas;
+8 AuthorsRodrigo Manzanas
Rodrigo Manzanas in OpenAIREM. D. Frías;
M. D. Frías
M. D. Frías in OpenAIREJesús Fernández;
Jesús Fernández
Jesús Fernández in OpenAIREDaniel San-Martín;
Daniel San-Martín
Daniel San-Martín in OpenAIRERodrigo Manzanas;
Rodrigo Manzanas
Rodrigo Manzanas in OpenAIREJoaquín Bedia;
Joaquín Bedia
Joaquín Bedia in OpenAIREAntonio S. Cofiño;
Antonio S. Cofiño
Antonio S. Cofiño in OpenAIREMaialen Iturbide;
Maialen Iturbide;Maialen Iturbide
Maialen Iturbide in OpenAIREEzequiel Cimadevilla;
José M. Gutiérrez;Ezequiel Cimadevilla
Ezequiel Cimadevilla in OpenAIREJorge Baño-Medina;
Jorge Baño-Medina
Jorge Baño-Medina in OpenAIRESixto Herrera;
Sixto Herrera
Sixto Herrera in OpenAIREhandle: 10261/213738
Climate-driven sectoral applications commonly require different types of climate data (e.g. observations, reanalysis, climate change projections) from different providers. Data access, harmonization and post-processing (e.g. bias correction) are time-consuming error-prone tasks requiring different specialized software tools at each stage of the data workflow, thus hindering reproducibility. Here we introduce climate4R, an R-based climate services oriented framework tailored to the needs of the vulnerability and impact assessment community that integrates in the same computing environment harmonized data access, post-processing, visualization and a provenance metadata model for traceability and reproducibility of results. climate4R allows accessing local and remote (OPeNDAP) data sources, such as the Santander User Data Gateway (UDG), a THREDDS-based service including a wide catalogue of popular datasets (e.g. ERA-Interim, CORDEX, etc.). This provides a unique comprehensive open framework for end-to-end sectoral reproducible applications. All the packages, data and documentation for reproducing the experiments in this paper are available from http://www.meteo.unican.es/climate4R. This work has been funded by the Spanish R+D Program of the Ministry of Economy and Competitiveness, through grants MULTI-SDM (CGL2015-66583-R) and INSIGNIA (CGL2016-79210-R), co-funded by ERDF/FEDER.
Environmental Modell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2018.09.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 199visibility views 199 download downloads 799 Powered bymore_vert Environmental Modell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2018.09.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | FUMEEC| FUMEAuthors:S. Herrera;
S. Herrera
S. Herrera in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIREJ. M. Gutiérrez;
J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREJ. Fernández;
+1 AuthorsJ. Fernández
J. Fernández in OpenAIRES. Herrera;
S. Herrera
S. Herrera in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIREJ. M. Gutiérrez;
J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREJ. Fernández;
J. Fernández
J. Fernández in OpenAIREJ. M. Moreno;
J. M. Moreno
J. M. Moreno in OpenAIREhandle: 10261/93830
Fire danger indices are descriptors of fire potential in a large area, and combine a few variables that affect the initiation, spread and control of forest fires. The Canadian Fire Weather Index (FWI) is one of the most widely used fire danger indices in the world, and it is built upon instantaneous values of temperature, relative humidity and wind velocity at noon, together with 24 hourly accumulated precipitation. However, the scarcity of appropriate data has motivated the use of daily mean values as surrogates of the instantaneous ones in several studies that aimed to assess the impact of global warming on fire. In this paper we test the sensitivity of FWI values to both instantaneous and daily mean values, analyzing their effect on mean seasonal fire danger (seasonal severity rating, SSR) and extreme fire danger conditions (90th percentile, FWI90, and FWI>30, FOT30), with a special focus on its influence in climate change impact studies. To this aim, we analyzed reanalysis and regional climate model (RCM) simulations, and compared the resulting instantaneous and daily mean versions both in the present climate and in a future scenario. In particular, we were interested in determining the effect of these datasets on the projected changes obtained for the mean and extreme seasonal fire danger conditions in future climate scenarios, as given by a RCM. Overall, our results warn against the use of daily mean data for the computation of present and future fire danger conditions. Daily mean data lead to systematic negative biases of fire danger calculations. Although the mean seasonal fire danger indices might be corrected to compensate for this bias, fire danger extremes (FWI90 and specially FOT30) cannot be reliably transformed to accommodate the spatial pattern and magnitude of their respective instantaneous versions, leading to inconsistent results when projected into the future. As a result, we advocate caution when using daily mean data and strongly recommend the application of the standard definition for its calculation as closely as possible. Threshold-dependent indices derived from FWI are not reliably represented by the daily mean version and thus can neither be applied for the estimation of future fire danger season length and severity, nor for the estimation of future extreme events. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 243888 (FUME Project). J.F. acknowledges nancial support from the Spanish R&D&I programme through grant CGL2010-22158-C02 (CORWES project). The ESCENA project (200800050084265) of the Spanish \Strategic action on energy and climate change" provided the WRF RCM simulation used in this study. We acknowledge three anonymous referees for their useful comments that helped to improve the original manuscript.
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-012-0667-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 167visibility views 167 download downloads 223 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-012-0667-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | FUMEEC| FUMEAuthors:S. Herrera;
S. Herrera
S. Herrera in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIREJ. M. Gutiérrez;
J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREJ. Fernández;
+1 AuthorsJ. Fernández
J. Fernández in OpenAIRES. Herrera;
S. Herrera
S. Herrera in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIREJ. M. Gutiérrez;
J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREJ. Fernández;
J. Fernández
J. Fernández in OpenAIREJ. M. Moreno;
J. M. Moreno
J. M. Moreno in OpenAIREhandle: 10261/93830
Fire danger indices are descriptors of fire potential in a large area, and combine a few variables that affect the initiation, spread and control of forest fires. The Canadian Fire Weather Index (FWI) is one of the most widely used fire danger indices in the world, and it is built upon instantaneous values of temperature, relative humidity and wind velocity at noon, together with 24 hourly accumulated precipitation. However, the scarcity of appropriate data has motivated the use of daily mean values as surrogates of the instantaneous ones in several studies that aimed to assess the impact of global warming on fire. In this paper we test the sensitivity of FWI values to both instantaneous and daily mean values, analyzing their effect on mean seasonal fire danger (seasonal severity rating, SSR) and extreme fire danger conditions (90th percentile, FWI90, and FWI>30, FOT30), with a special focus on its influence in climate change impact studies. To this aim, we analyzed reanalysis and regional climate model (RCM) simulations, and compared the resulting instantaneous and daily mean versions both in the present climate and in a future scenario. In particular, we were interested in determining the effect of these datasets on the projected changes obtained for the mean and extreme seasonal fire danger conditions in future climate scenarios, as given by a RCM. Overall, our results warn against the use of daily mean data for the computation of present and future fire danger conditions. Daily mean data lead to systematic negative biases of fire danger calculations. Although the mean seasonal fire danger indices might be corrected to compensate for this bias, fire danger extremes (FWI90 and specially FOT30) cannot be reliably transformed to accommodate the spatial pattern and magnitude of their respective instantaneous versions, leading to inconsistent results when projected into the future. As a result, we advocate caution when using daily mean data and strongly recommend the application of the standard definition for its calculation as closely as possible. Threshold-dependent indices derived from FWI are not reliably represented by the daily mean version and thus can neither be applied for the estimation of future fire danger season length and severity, nor for the estimation of future extreme events. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 243888 (FUME Project). J.F. acknowledges nancial support from the Spanish R&D&I programme through grant CGL2010-22158-C02 (CORWES project). The ESCENA project (200800050084265) of the Spanish \Strategic action on energy and climate change" provided the WRF RCM simulation used in this study. We acknowledge three anonymous referees for their useful comments that helped to improve the original manuscript.
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-012-0667-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 167visibility views 167 download downloads 223 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-012-0667-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 SpainPublisher:IOP Publishing Funded by:EC | FUMEEC| FUMEAuthors:Itziar R. Urbieta;
Itziar R. Urbieta
Itziar R. Urbieta in OpenAIREJoaquín Bedia;
Joaquín Bedia
Joaquín Bedia in OpenAIREJosé M. Moreno;
Jesús San Miguel-Ayanz; +5 AuthorsJosé M. Moreno
José M. Moreno in OpenAIREItziar R. Urbieta;
Itziar R. Urbieta
Itziar R. Urbieta in OpenAIREJoaquín Bedia;
Joaquín Bedia
Joaquín Bedia in OpenAIREJosé M. Moreno;
Jesús San Miguel-Ayanz; José María Gutiérrez; Jon E. Keeley; Jon E. Keeley;José M. Moreno
José M. Moreno in OpenAIREGonzalo Zavala;
Andrea Camia;Gonzalo Zavala
Gonzalo Zavala in OpenAIREhandle: 10261/139958 , 10578/8189
Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire?weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (#8805;1 ha), number of large fires (#8805;100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.
Environmental Resear... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/11/114013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 253visibility views 253 download downloads 95 Powered bymore_vert Environmental Resear... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/11/114013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 SpainPublisher:IOP Publishing Funded by:EC | FUMEEC| FUMEAuthors:Itziar R. Urbieta;
Itziar R. Urbieta
Itziar R. Urbieta in OpenAIREJoaquín Bedia;
Joaquín Bedia
Joaquín Bedia in OpenAIREJosé M. Moreno;
Jesús San Miguel-Ayanz; +5 AuthorsJosé M. Moreno
José M. Moreno in OpenAIREItziar R. Urbieta;
Itziar R. Urbieta
Itziar R. Urbieta in OpenAIREJoaquín Bedia;
Joaquín Bedia
Joaquín Bedia in OpenAIREJosé M. Moreno;
Jesús San Miguel-Ayanz; José María Gutiérrez; Jon E. Keeley; Jon E. Keeley;José M. Moreno
José M. Moreno in OpenAIREGonzalo Zavala;
Andrea Camia;Gonzalo Zavala
Gonzalo Zavala in OpenAIREhandle: 10261/139958 , 10578/8189
Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire?weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (#8805;1 ha), number of large fires (#8805;100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.
Environmental Resear... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/11/114013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 253visibility views 253 download downloads 95 Powered bymore_vert Environmental Resear... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/11/114013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Spain, France, Spain, Spain, Argentina, Spain, Switzerland, ArgentinaPublisher:Copernicus GmbH Authors: M. Iturbide;J. M. Gutiérrez;
L. M. Alves;J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREJ. Bedia;
+27 AuthorsJ. Bedia
J. Bedia in OpenAIREM. Iturbide;J. M. Gutiérrez;
L. M. Alves;J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIRER. Cerezo-Mota;
R. Cerezo-Mota
R. Cerezo-Mota in OpenAIREE. Cimadevilla;
E. Cimadevilla
E. Cimadevilla in OpenAIREA. S. Cofiño;
A. Di Luca;A. S. Cofiño
A. S. Cofiño in OpenAIRES. H. Faria;
S. H. Faria;S. H. Faria
S. H. Faria in OpenAIREI. V. Gorodetskaya;
M. Hauser;I. V. Gorodetskaya
I. V. Gorodetskaya in OpenAIRES. Herrera;
S. Herrera
S. Herrera in OpenAIREK. Hennessy;
K. Hennessy
K. Hennessy in OpenAIREH. T. Hewitt;
H. T. Hewitt
H. T. Hewitt in OpenAIRER. G. Jones;
R. G. Jones;R. G. Jones
R. G. Jones in OpenAIRES. Krakovska;
S. Krakovska;S. Krakovska
S. Krakovska in OpenAIRER. Manzanas;
R. Manzanas;R. Manzanas
R. Manzanas in OpenAIRED. Martínez-Castro;
D. Martínez-Castro; G. T. Narisma; I. S. Nurhati;D. Martínez-Castro
D. Martínez-Castro in OpenAIREI. Pinto;
S. I. Seneviratne;I. Pinto
I. Pinto in OpenAIREB. van den Hurk;
B. van den Hurk
B. van den Hurk in OpenAIREC. S. Vera;
C. S. Vera; C. S. Vera;C. S. Vera
C. S. Vera in OpenAIREAbstract. Several sets of reference regions have been proposed in the literature for the regional synthesis of observed and model-projected climate change information. A popular example is the set of reference regions introduced in the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX) based on a prior coarser selection and then slightly modified for the 5th Assessment Report of the IPCC. This set was developed for reporting sub-continental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes (the typical resolution of the 5th Climate Model Intercomparison Projection, CMIP5, climate models was around 2º). These regions have been used as the basis for several popular spatially aggregated datasets, such as the seasonal mean temperature and precipitation in IPCC regions for CMIP5. Here we present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher model resolution (around 1º for CMIP6). As a result, the number of regions increased to 43 land plus 12 open ocean, better representing consistent regional climate features. The paper describes the rationale followed for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and shapefile together with companion R and Python notebooks to illustrate their use in practical problems (trimming data, etc.). We also describe the generation of a new dataset with monthly temperature and precipitation spatially aggregated in the new regions, currently for CMIP5 (for backwards consistency) and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter diagrams to offer guidance on the likely range of future climate change at the scale of reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository; https://github.com/SantanderMetGroup/ATLAS, doi:10.5281/zenodo.3688072 (Iturbide et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2019-258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 327 citations 327 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 300visibility views 300 download downloads 169 Powered bymore_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2019-258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Spain, France, Spain, Spain, Argentina, Spain, Switzerland, ArgentinaPublisher:Copernicus GmbH Authors: M. Iturbide;J. M. Gutiérrez;
L. M. Alves;J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREJ. Bedia;
+27 AuthorsJ. Bedia
J. Bedia in OpenAIREM. Iturbide;J. M. Gutiérrez;
L. M. Alves;J. M. Gutiérrez
J. M. Gutiérrez in OpenAIREJ. Bedia;
J. Bedia
J. Bedia in OpenAIRER. Cerezo-Mota;
R. Cerezo-Mota
R. Cerezo-Mota in OpenAIREE. Cimadevilla;
E. Cimadevilla
E. Cimadevilla in OpenAIREA. S. Cofiño;
A. Di Luca;A. S. Cofiño
A. S. Cofiño in OpenAIRES. H. Faria;
S. H. Faria;S. H. Faria
S. H. Faria in OpenAIREI. V. Gorodetskaya;
M. Hauser;I. V. Gorodetskaya
I. V. Gorodetskaya in OpenAIRES. Herrera;
S. Herrera
S. Herrera in OpenAIREK. Hennessy;
K. Hennessy
K. Hennessy in OpenAIREH. T. Hewitt;
H. T. Hewitt
H. T. Hewitt in OpenAIRER. G. Jones;
R. G. Jones;R. G. Jones
R. G. Jones in OpenAIRES. Krakovska;
S. Krakovska;S. Krakovska
S. Krakovska in OpenAIRER. Manzanas;
R. Manzanas;R. Manzanas
R. Manzanas in OpenAIRED. Martínez-Castro;
D. Martínez-Castro; G. T. Narisma; I. S. Nurhati;D. Martínez-Castro
D. Martínez-Castro in OpenAIREI. Pinto;
S. I. Seneviratne;I. Pinto
I. Pinto in OpenAIREB. van den Hurk;
B. van den Hurk
B. van den Hurk in OpenAIREC. S. Vera;
C. S. Vera; C. S. Vera;C. S. Vera
C. S. Vera in OpenAIREAbstract. Several sets of reference regions have been proposed in the literature for the regional synthesis of observed and model-projected climate change information. A popular example is the set of reference regions introduced in the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX) based on a prior coarser selection and then slightly modified for the 5th Assessment Report of the IPCC. This set was developed for reporting sub-continental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes (the typical resolution of the 5th Climate Model Intercomparison Projection, CMIP5, climate models was around 2º). These regions have been used as the basis for several popular spatially aggregated datasets, such as the seasonal mean temperature and precipitation in IPCC regions for CMIP5. Here we present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher model resolution (around 1º for CMIP6). As a result, the number of regions increased to 43 land plus 12 open ocean, better representing consistent regional climate features. The paper describes the rationale followed for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and shapefile together with companion R and Python notebooks to illustrate their use in practical problems (trimming data, etc.). We also describe the generation of a new dataset with monthly temperature and precipitation spatially aggregated in the new regions, currently for CMIP5 (for backwards consistency) and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter diagrams to offer guidance on the likely range of future climate change at the scale of reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository; https://github.com/SantanderMetGroup/ATLAS, doi:10.5281/zenodo.3688072 (Iturbide et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2019-258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 327 citations 327 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 300visibility views 300 download downloads 169 Powered bymore_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2019-258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Springer Science and Business Media LLC Authors:Ana Casanueva;
Ana Casanueva;Ana Casanueva
Ana Casanueva in OpenAIREJesús Fernández;
Jesús Fernández
Jesús Fernández in OpenAIREJoaquín Bedia;
+2 AuthorsJoaquín Bedia
Joaquín Bedia in OpenAIREAna Casanueva;
Ana Casanueva;Ana Casanueva
Ana Casanueva in OpenAIREJesús Fernández;
Jesús Fernández
Jesús Fernández in OpenAIREJoaquín Bedia;
Joaquín Bedia
Joaquín Bedia in OpenAIRESixto Herrera;
José M. Gutiérrez;Sixto Herrera
Sixto Herrera in OpenAIREhandle: 10261/170453
The use and development of bias correction (BC) methods has grown fast in recent years, due to the increased demand of unbiased projections by many sectoral climate change impact applications. Case studies are frequently based on multi-variate climate indices (CIs) combining two or more essential climate variables that are frequently individually corrected prior to CI calculation. This poses the question of whether the BC method modifies the inter-variable dependencies and eventually the climate change signal. The direct bias correction of the multi-variate CI stands as a usual alternative, since it preserves the physical and temporal coherence among the primary variables as represented in the dynamical model output, at the expense of incorporating the individual biases on the CI with an effect difficult to foresee, particularly in the case of complex CIs bearing in their formulation non-linear relationships between components. Such is the case of the Fire Weather Index (FWI), a meteorological fire danger indicator frequently used in forest fire prevention and research. In the present work, we test the suitability of the direct BC approach on FWI as a representative multi-variate CI, assessing its performance in present climate conditions and its effect on the climate change signal when applied to future projections. Moreover, the results are compared with the common approach of correcting the input variables separately. To this aim, we apply the widely used empirical quantile mapping method (QM), adjusting the 99 empirical percentiles. The analysis of the percentile adjustment function (PAF) provides insight into the effect of the QM on the climate change signal. Although both approaches present similar results in the present climate, the direct correction introduces a greater modification of the original change signal. These results warn against the blind use of QM, even in the case of essential climate variables or uni-variate CIs. All the statistical downscaling experiments have been computed using the MeteoLab software (http://www.meteo.unican.es/software/meteolab), an opensource Matlab toolbox for statistical downscaling. The authors are grateful to the Spanish Meteorological Agency (AEMET) for providing the observational data and Erika Coppola from the International Center of Theoretical Physics (ICTP) and Erik van Meijgaard from the Royal Netherlands Meteorological Institute (KNMI) for making available the ENSEMBLES RegCM3 and RACMO2 regional climate models, respectively. A.C. thanks to the Spanish Ministry of Economy and Competitiveness for the funding provided within the FPI programme (BES-2011-047612). J.F. acknowledges support from the INSIGNIA project, co-funded by the Spanish R&D programme (CGL2016-79210-R) and the European Regional Development Fund. This work was partially supported by the project MULTI-SDM (CGL2015-66583-R, MINECO/FEDER). We also thank two anonymous referees for their useful comments that helped to improve the original manuscript.
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2167-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 227visibility views 227 download downloads 260 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2167-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Springer Science and Business Media LLC Authors:Ana Casanueva;
Ana Casanueva;Ana Casanueva
Ana Casanueva in OpenAIREJesús Fernández;
Jesús Fernández
Jesús Fernández in OpenAIREJoaquín Bedia;
+2 AuthorsJoaquín Bedia
Joaquín Bedia in OpenAIREAna Casanueva;
Ana Casanueva;Ana Casanueva
Ana Casanueva in OpenAIREJesús Fernández;
Jesús Fernández
Jesús Fernández in OpenAIREJoaquín Bedia;
Joaquín Bedia
Joaquín Bedia in OpenAIRESixto Herrera;
José M. Gutiérrez;Sixto Herrera
Sixto Herrera in OpenAIREhandle: 10261/170453
The use and development of bias correction (BC) methods has grown fast in recent years, due to the increased demand of unbiased projections by many sectoral climate change impact applications. Case studies are frequently based on multi-variate climate indices (CIs) combining two or more essential climate variables that are frequently individually corrected prior to CI calculation. This poses the question of whether the BC method modifies the inter-variable dependencies and eventually the climate change signal. The direct bias correction of the multi-variate CI stands as a usual alternative, since it preserves the physical and temporal coherence among the primary variables as represented in the dynamical model output, at the expense of incorporating the individual biases on the CI with an effect difficult to foresee, particularly in the case of complex CIs bearing in their formulation non-linear relationships between components. Such is the case of the Fire Weather Index (FWI), a meteorological fire danger indicator frequently used in forest fire prevention and research. In the present work, we test the suitability of the direct BC approach on FWI as a representative multi-variate CI, assessing its performance in present climate conditions and its effect on the climate change signal when applied to future projections. Moreover, the results are compared with the common approach of correcting the input variables separately. To this aim, we apply the widely used empirical quantile mapping method (QM), adjusting the 99 empirical percentiles. The analysis of the percentile adjustment function (PAF) provides insight into the effect of the QM on the climate change signal. Although both approaches present similar results in the present climate, the direct correction introduces a greater modification of the original change signal. These results warn against the blind use of QM, even in the case of essential climate variables or uni-variate CIs. All the statistical downscaling experiments have been computed using the MeteoLab software (http://www.meteo.unican.es/software/meteolab), an opensource Matlab toolbox for statistical downscaling. The authors are grateful to the Spanish Meteorological Agency (AEMET) for providing the observational data and Erika Coppola from the International Center of Theoretical Physics (ICTP) and Erik van Meijgaard from the Royal Netherlands Meteorological Institute (KNMI) for making available the ENSEMBLES RegCM3 and RACMO2 regional climate models, respectively. A.C. thanks to the Spanish Ministry of Economy and Competitiveness for the funding provided within the FPI programme (BES-2011-047612). J.F. acknowledges support from the INSIGNIA project, co-funded by the Spanish R&D programme (CGL2016-79210-R) and the European Regional Development Fund. This work was partially supported by the project MULTI-SDM (CGL2015-66583-R, MINECO/FEDER). We also thank two anonymous referees for their useful comments that helped to improve the original manuscript.
Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2167-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 227visibility views 227 download downloads 260 Powered bymore_vert Climatic Change arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2167-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu