- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Chetan Pathak; Saurabh Kumar Pandey;Shubham Bhatt;
Raghvendra Shukla;Shubham Bhatt
Shubham Bhatt in OpenAIREAbstract In this article, we have studied an identical section of a core-shell ZnO Nanorod (NR) based lead-free perovskite solar cell. Various factors affecting the solar cell’s performance have been rigorously investigated for device optimization; specifically, the length and diameter of the ZnO NR core, perovskite shell thickness, thickness of perovskite cap layer, and hole transport layer (HTL) thickness. The defect density of states (DOS) in the perovskite absorber layer and the effect of interface defect density on the performance of the cell are also studied. We obtained power conversion efficiency (PCE) of 14.50%, the open-circuit voltage (VOC) of 0.96 V; short-circuit current density (JSC) of 18.11 mA/cm2 and Fill factor (FF) of 83.35%. We also analyzed the effect of tilt or inclination of NR on the performance of the cell which is a crucial factor toward achieving high performance. By optimizing the device parameters, we have achieved a PCE of 21.27%, VOC of 0.97 V, JSC of 29.56 mA/cm2, and FF of 84.15% at an inclination of 10-degree tilt with respect to the incident light under AM 1.5 illumination. The shadowing mechanism behind efficiency droop is also presented to further realize an optimal design high-performance PSC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.12.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.12.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Chetan Pathak; Saurabh Kumar Pandey;Shubham Bhatt;
Raghvendra Shukla;Shubham Bhatt
Shubham Bhatt in OpenAIREAbstract In this article, we have studied an identical section of a core-shell ZnO Nanorod (NR) based lead-free perovskite solar cell. Various factors affecting the solar cell’s performance have been rigorously investigated for device optimization; specifically, the length and diameter of the ZnO NR core, perovskite shell thickness, thickness of perovskite cap layer, and hole transport layer (HTL) thickness. The defect density of states (DOS) in the perovskite absorber layer and the effect of interface defect density on the performance of the cell are also studied. We obtained power conversion efficiency (PCE) of 14.50%, the open-circuit voltage (VOC) of 0.96 V; short-circuit current density (JSC) of 18.11 mA/cm2 and Fill factor (FF) of 83.35%. We also analyzed the effect of tilt or inclination of NR on the performance of the cell which is a crucial factor toward achieving high performance. By optimizing the device parameters, we have achieved a PCE of 21.27%, VOC of 0.97 V, JSC of 29.56 mA/cm2, and FF of 84.15% at an inclination of 10-degree tilt with respect to the incident light under AM 1.5 illumination. The shadowing mechanism behind efficiency droop is also presented to further realize an optimal design high-performance PSC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.12.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.12.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu