- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Mohamed A. Habib; Yousef N. Dabwan; Esmail M. A. Mokheimer;AbstractThe present work provides an investigation of the technical and economic feasibility of integrating Concentrating Solar Power (CSP) technologies with cogeneration gas turbine systems that are progressively being installed in Saudi Arabia. Different designs of hybrid solar/fossil fuel gas turbine cogeneration systems have been proposed. These designs consider the possible integration of Solar Tower (ST), Parabolic Trough Collector (PTC), and Linear Fresnel Reflector (LFR) systems with conventional gas turbine cogeneration systems. These three CSP technologies were assessed for possible integration with a gas turbine cogeneration system that generates steam at a constant flow rate of 81.44kg/s at P = 45.88 (bar) and temperature of T = 394°C throughout the year in addition to the generation of electricity. THERMOFLEX with PEACE simulation software has been used to assess the performance of the integrated solar gas turbine cogeneration plant (ISGCP) for different gas turbine sizes under Dhahran weather conditions. Thermo-economic comparative analysis have been conducted to reach the optimal levelized electricity cost (LEC) and CO2 emission combination for each ISGCP configuration for each the three CSP technologies in comparison with the integration of CO2 capture technology to the conventional plant. The simulation results revealed that the optimal configuration is the integration of LFR with the steam side of a gas turbine cogeneration plant of 50 MWe, which gives a LEC of 5.1 US / kWh with 119 k tonne reduction of the annual CO2 emission.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:EC | a-Si PVT-ORCEC| a-Si PVT-ORCGao, Guangtao; Li, Jing; Li, Pengcheng; Cao, Jingyu; Pei, Gang; Dabwan, Yousef N.; Su, Yuehong;An innovative solar thermal power generation system using cascade steam-organic Rankine cycle (SORC) and two-stage accumulators has recently been proposed. This system offers a significantly higher heat storage capacity than conventional direct steam generation (DSG) solar power plants. The steam condensation temperature (
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Hull: Repository@HullArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.01.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Hull: Repository@HullArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.01.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Mohamed A. Habib; Yousef N. Dabwan; Esmail M. A. Mokheimer;AbstractThe present work provides an investigation of the technical and economic feasibility of integrating Concentrating Solar Power (CSP) technologies with cogeneration gas turbine systems that are progressively being installed in Saudi Arabia. Different designs of hybrid solar/fossil fuel gas turbine cogeneration systems have been proposed. These designs consider the possible integration of Solar Tower (ST), Parabolic Trough Collector (PTC), and Linear Fresnel Reflector (LFR) systems with conventional gas turbine cogeneration systems. These three CSP technologies were assessed for possible integration with a gas turbine cogeneration system that generates steam at a constant flow rate of 81.44kg/s at P = 45.88 (bar) and temperature of T = 394°C throughout the year in addition to the generation of electricity. THERMOFLEX with PEACE simulation software has been used to assess the performance of the integrated solar gas turbine cogeneration plant (ISGCP) for different gas turbine sizes under Dhahran weather conditions. Thermo-economic comparative analysis have been conducted to reach the optimal levelized electricity cost (LEC) and CO2 emission combination for each ISGCP configuration for each the three CSP technologies in comparison with the integration of CO2 capture technology to the conventional plant. The simulation results revealed that the optimal configuration is the integration of LFR with the steam side of a gas turbine cogeneration plant of 50 MWe, which gives a LEC of 5.1 US / kWh with 119 k tonne reduction of the annual CO2 emission.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:EC | a-Si PVT-ORCEC| a-Si PVT-ORCGao, Guangtao; Li, Jing; Li, Pengcheng; Cao, Jingyu; Pei, Gang; Dabwan, Yousef N.; Su, Yuehong;An innovative solar thermal power generation system using cascade steam-organic Rankine cycle (SORC) and two-stage accumulators has recently been proposed. This system offers a significantly higher heat storage capacity than conventional direct steam generation (DSG) solar power plants. The steam condensation temperature (
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Hull: Repository@HullArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.01.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Hull: Repository@HullArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.01.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu