- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Royal Society of Chemistry (RSC) Peng You; Guijun Li; Guanqi Tang; Jiupeng Cao; Feng Yan;doi: 10.1039/c9ee02324k
Ultrafast laser-annealing technique for the fabrication of large-grain perovskite films and efficient perovskite solar cells at room temperature.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee02324k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee02324k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Authors: Wang, Y.L.; Li, Guijun; Chan, K.C.;handle: 10397/104139
Abstract Recently, interfacial solar-driven evaporation has received tremendous attention due to its potential for enhancing solar thermal conversation ability via heat localization at the evaporation interface. Diverse materials and configurations have been explored to boost the evaporation using plastic foam as the thermal insulator at the cost of complex assembly and environmental threats. Herein, we demonstrate a biodegradable, cost-effective, and scalable three-dimensional (3D) cotton paper-based solar steam generator prepared by one-step laser-induced forward transfer in the ambient atmosphere. The as-prepared evaporator has excellent solar absorption ability. The defining advantages of this method are that it can easily form a 3D structure and it is free from hazardous raw material involvement and waste generation. With further novel design by using a natural air gap instead of artificial plastic material to insulate the steam generation area and the underlying bulk water, the as-prepared evaporation system can achieve a high evaporation rate of 1711 g m−2 h−1 with a corresponding efficiency of 83% under one sun illumination. Such solar vaporization functions offer new insights into the future development of high-performance solar steam generators through an environmentally friendly and cost-effective pathway.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/104139Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/104139Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Royal Society of Chemistry (RSC) Peng You; Guijun Li; Guanqi Tang; Jiupeng Cao; Feng Yan;doi: 10.1039/c9ee02324k
Ultrafast laser-annealing technique for the fabrication of large-grain perovskite films and efficient perovskite solar cells at room temperature.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee02324k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee02324k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Authors: Wang, Y.L.; Li, Guijun; Chan, K.C.;handle: 10397/104139
Abstract Recently, interfacial solar-driven evaporation has received tremendous attention due to its potential for enhancing solar thermal conversation ability via heat localization at the evaporation interface. Diverse materials and configurations have been explored to boost the evaporation using plastic foam as the thermal insulator at the cost of complex assembly and environmental threats. Herein, we demonstrate a biodegradable, cost-effective, and scalable three-dimensional (3D) cotton paper-based solar steam generator prepared by one-step laser-induced forward transfer in the ambient atmosphere. The as-prepared evaporator has excellent solar absorption ability. The defining advantages of this method are that it can easily form a 3D structure and it is free from hazardous raw material involvement and waste generation. With further novel design by using a natural air gap instead of artificial plastic material to insulate the steam generation area and the underlying bulk water, the as-prepared evaporation system can achieve a high evaporation rate of 1711 g m−2 h−1 with a corresponding efficiency of 83% under one sun illumination. Such solar vaporization functions offer new insights into the future development of high-performance solar steam generators through an environmentally friendly and cost-effective pathway.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/104139Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/104139Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu