- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025 BelgiumPublisher:MDPI AG Funded by:EC | ECO-LIFEEC| ECO-LIFEAuthors: Stijn Van de Putte; Marijke Steeman; Arnold Janssens;doi: 10.3390/su17010252
The building energy performance gap, resulting from a discrepancy between the actual energy use and theoretical calculations, remains a persistent issue in building design. This study examines the energy performance of three multifamily buildings with a collective heating system powered by gas boilers and solar collectors: two that underwent deep renovation and one newly built. An extensive on-site monitoring system provides detailed data on both the heating demand and the final energy use. To ensure comparability, the total energy use of each unit is normalised using the energy signature method. The findings show the large spread of actual energy demands due to a wide variation in user profiles. The majority of dwellings have an actual energy use that is significantly higher than calculated, which is largely attributable to space heating. The gap is further exacerbated by substantial heat losses within the building’s heating system and by limited gains from the solar collectors, indicating discrepancies between design models and operational realities. To bridge this gap, there is a need for rigorous commissioning processes, at least during the initial operation phase start-up and ideally continuously. This can ensure more effective utilisation of renewable energy sources and reduce energy inefficiencies.
Sustainability arrow_drop_down Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su17010252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su17010252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 BelgiumPublisher:Elsevier BV Funded by:EC | ECO-LIFEEC| ECO-LIFEAuthors: Himpe, Eline; Van de Putte, Stijn; Laverge, Jelle; Janssens, Arnold;AbstractThe first year commissioning activities in 4 multi-family buildings from a zero-carbon neighbourhood is presented, with focus on the operation of the ventilation systems, the indoor climate and user acceptance. The key parameters to detect the main system failures are identified and the effect of the detected defects and failures on the energy performance of the dwellings is explored using dynamic simulations and monitoring data. It is concluded that commissioning of the building systems during occupancy is a vital part of the operational lifetime of a building project in order to achieve the high building performance targets in reality.
Energy Procedia arrow_drop_down Ghent University Academic BibliographyConference object . 2015Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Ghent University Academic BibliographyConference object . 2015Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 BelgiumPublisher:MDPI AG Funded by:EC | ECO-LIFEEC| ECO-LIFEAuthors: Stijn Van de Putte; Marijke Steeman; Arnold Janssens;doi: 10.3390/su17010252
The building energy performance gap, resulting from a discrepancy between the actual energy use and theoretical calculations, remains a persistent issue in building design. This study examines the energy performance of three multifamily buildings with a collective heating system powered by gas boilers and solar collectors: two that underwent deep renovation and one newly built. An extensive on-site monitoring system provides detailed data on both the heating demand and the final energy use. To ensure comparability, the total energy use of each unit is normalised using the energy signature method. The findings show the large spread of actual energy demands due to a wide variation in user profiles. The majority of dwellings have an actual energy use that is significantly higher than calculated, which is largely attributable to space heating. The gap is further exacerbated by substantial heat losses within the building’s heating system and by limited gains from the solar collectors, indicating discrepancies between design models and operational realities. To bridge this gap, there is a need for rigorous commissioning processes, at least during the initial operation phase start-up and ideally continuously. This can ensure more effective utilisation of renewable energy sources and reduce energy inefficiencies.
Sustainability arrow_drop_down Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su17010252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su17010252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 BelgiumPublisher:Elsevier BV Funded by:EC | ECO-LIFEEC| ECO-LIFEAuthors: Himpe, Eline; Van de Putte, Stijn; Laverge, Jelle; Janssens, Arnold;AbstractThe first year commissioning activities in 4 multi-family buildings from a zero-carbon neighbourhood is presented, with focus on the operation of the ventilation systems, the indoor climate and user acceptance. The key parameters to detect the main system failures are identified and the effect of the detected defects and failures on the energy performance of the dwellings is explored using dynamic simulations and monitoring data. It is concluded that commissioning of the building systems during occupancy is a vital part of the operational lifetime of a building project in order to achieve the high building performance targets in reality.
Energy Procedia arrow_drop_down Ghent University Academic BibliographyConference object . 2015Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Ghent University Academic BibliographyConference object . 2015Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu