Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Energies

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Daniel Coppede; Fabio da Silva Bortoli; Joao Manoel Losada Moreira; Nadja Simao Magalhaes; +1 Authors

    An investigation on a flywheel is presented based on finite element modelling simulations for different geometries. The goal was to optimise the energy density (rotational energy-to-mass ratio) and, at the same time, the rotational energy of a flywheel rotor. The stress behaviour of flywheel rotors under the rotational speed at the maximum stress achievable by the flywheel was analysed. Under this condition, the energy density was obtained for the different geometries, as well as the rotational energy. The best energy density performance due to geometry was achieved with a flywheel rotor presenting a new Gaussian section, which is different from the known Laval disk shape. The best results using a single disk involved a rotational speed of nearly 279,000 rpm and a rotational energy density around 1584 kJ/kg (440 Wh/kg). These values still yielded low total energy; to increase its value, two or three rotors were added to the flywheel, which were analysed in regard to stability. In particular, the triple rotor energy density was ≈ 1550 kJ/kg (431 Wh/kg). As some instability was found in these rotors, a solution using reinforcement was developed to avoid such instabilities. The energy density of such a reinforced double rotor neared 1451 kJ/kg (403 Wh/kg), and the system achieved higher total energy. The material assumed for the devices was carbon fibre Hexcel UHM 12,000, a material kept constant throughout the simulations to allow comparison among the different geometries.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Daniel Coppede; Fabio da Silva Bortoli; Joao Manoel Losada Moreira; Nadja Simao Magalhaes; +1 Authors

    An investigation on a flywheel is presented based on finite element modelling simulations for different geometries. The goal was to optimise the energy density (rotational energy-to-mass ratio) and, at the same time, the rotational energy of a flywheel rotor. The stress behaviour of flywheel rotors under the rotational speed at the maximum stress achievable by the flywheel was analysed. Under this condition, the energy density was obtained for the different geometries, as well as the rotational energy. The best energy density performance due to geometry was achieved with a flywheel rotor presenting a new Gaussian section, which is different from the known Laval disk shape. The best results using a single disk involved a rotational speed of nearly 279,000 rpm and a rotational energy density around 1584 kJ/kg (440 Wh/kg). These values still yielded low total energy; to increase its value, two or three rotors were added to the flywheel, which were analysed in regard to stability. In particular, the triple rotor energy density was ≈ 1550 kJ/kg (431 Wh/kg). As some instability was found in these rotors, a solution using reinforcement was developed to avoid such instabilities. The energy density of such a reinforced double rotor neared 1451 kJ/kg (403 Wh/kg), and the system achieved higher total energy. The material assumed for the devices was carbon fibre Hexcel UHM 12,000, a material kept constant throughout the simulations to allow comparison among the different geometries.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph