- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Muhammad Ishfaq; Azeem Asghar; Imtiaz Ali; Aqib Zafar Khan; Ayesha Shahid; Ning Wang; Hui Zhu; Hesham R. El-Seedi; Muhammad Aamer Mehmood; Chen-Guang Liu;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 MalaysiaPublisher:Elsevier BV Authors: Naqvi, Salman Raza; Khoja, Asif Hussain; Ali, Imtiaz; Muhammad Naqvi, Muhammad Naqvi; +4 AuthorsNaqvi, Salman Raza; Khoja, Asif Hussain; Ali, Imtiaz; Muhammad Naqvi, Muhammad Naqvi; Noor, Tayyaba; Ahmad, Awais; Luque, Rafael; Saidina Amin, Nor Aishah;Biomass pyrolysis is one of the cleaner ways to produce bioenergy focusing on bio-oil. The high oxygen content of oxygen in bio-oil limits its application in transportation applications. The deoxygenation of bio-oil using various catalyst systems is required to upgrade the bio-oil. Herein, we presented the scientometric analysis of microporous zeolites for deoxygenation of biomass-derived bio-oil. The state of the art review of biomass catalytic deoxygenation using zeolite-based materials is elucidated. A special focus on the role of catalyst physicochemical properties and degree of deoxygenation is Furthermore, the reaction pathways for different zeolites for bio-oil upgradation are presented. Finally, the technology readiness level is assessed and future recommendations are also presented.
Fuel arrow_drop_down Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Saudi ArabiaPublisher:Frontiers Media SA Wasif Farooq; Imtiaz Ali; Salman Raza Naqvi; Mohd Sajid; Hassnain Abbas Khan; Sagir Adamu; Sagir Adamu;handle: 10754/674139
This study investigates the efficacy of a prepared Ni/θ-Al2O3 catalyst during the pyrolytic conversion of Parachlorella kessleri HY-6 and compares the results with non-catalytic conversion. The catalyst was characterized by techniques such as Brunauer–Emmett–Teller (BET) for surface area, acidity, and X-ray powder diffraction (XRD). Isoconversional and combined kinetic methods were used to study the pyrolytic kinetics of the process. Ni/θ-Al2O3 was used at 10, 20, and 30% of the algal biomass. The addition of Ni/θ-Al2O3 facilitated the conversion by lowering the mean activation energy during pyrolysis. The catalytic effect was more pronounced at lower and higher conversions. The presence of the catalyst facilitated the pyrolysis as indicated by the lower value of activation energy and ∆H, and ∆G. Gases evolved during pyrolysis were qualitatively analyzed by FTIR to see the effect of catalyst on evolved gas composition during the pyrolysis process.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.775037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.775037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Malaysia, United Kingdom, MalaysiaPublisher:Elsevier BV Junaid Ahmad; Muhammad Awais; Umer Rashid; Chawalit Ngamcharussrivichai; Salman Raza Naqvi; Imtiaz Ali;Since industrial development and globalization of the world, fossil fuels remain a major source of energy for almost all sectors of life. Fossil fuels, without doubt, play a vital role in the development of today’s world. However, there are increasing reservations about the consumption of fossil fuels due to their detrimental impact on our ecosystem. In recent decades, biodiesel has attracted much attention as a promising replacement for fossil fuel-based diesel, especially in the transportation sector. Biodiesel is a non-toxic, environmentally friendly, and carbon-free fuel that can be made from any kind of vegetable oil or fat. In recent developments, numerous techniques have been developed to efficiently prepare biodiesel from oil/fats. Therefore, in this paper, we cover a new advancement in techniques used for the conversion of oil/fat to biodiesel and the role of artificial intelligence (AI). AI approaches help predict the effectiveness of biodiesel production techniques and optimize the process, in addition to minimizing the cost of the process. The AI-enabled biodiesel prediction methods consist of several stages, i.e., biodiesel data collection, biodiesel data preprocessing, developing, and tuning machine learning (ML) algorithm on biodiesel data, and predicting unknown biodiesel properties. Therefore, the main purpose of applying AI to the biodiesel production process is to improve the process optimization and to develop AI models for fuel properties measurements and ultimately reduce the cost of the product. Because these problems have not been addressed previously, we hope that our analysis will help future researchers identify the appropriate technique and feedstock to produce high-quality biodiesel.
Fuel arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.127379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.127379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Abdul Hai; G. Bharath; Imtiaz Ali; Muhammad Daud; Israa Othman; K. Rambabu; Mohammad Abu Haija; Shadi W. Hasan; Fawzi Banat;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Arslan Khan; Imtiaz Ali; Wasif Farooq; Salman Raza Naqvi; Muhammad Taqi Mehran; Ameen Shahid; Rabia Liaquat; Muhammad Waqas Anjum; Muhammad Naqvi;L'élimination et la gestion des boues d'épuration des tanneries est un enjeu difficile pour les industries du cuir en raison de leurs effets néfastes sur l'environnement. Dans cette étude, la caractérisation et l'évaluation détaillées à l'aide de paramètres cinétiques et thermodynamiques des boues d'épuration de tannerie dans un environnement de combustion ont été utilisées. Des méthodes sans modèle d'isoconversion comme Ozawa-Flynn-Wall (OFW), Friedman et Kissinger-Akahira-Sunose (KAS) ont été utilisées pour étudier la cinétique et les paramètres thermodynamiques dans l'environnement de l'air. Les énergies d'activation (Ea) pour le Friedman, le KAS et l'OFW ont été rapportées. Les courbes DTG à la vitesse de chauffe de 5, 10, 20 et 40 °C/min montrent les conversions diversifiées en trois étapes majeures. Les valeurs Ea pour les gammes de modèles sont Friedman (148,96 kJ/mol-395,23 kJ/mol), KAS (169,65 kJ/mol-383,75 kJ/mol) et OFW (176,44 kJ/mol-377,85 kJ/mol). L'Ea moyen pour le Friedman est de 226,04 kJ/mol tandis que pour KAS et OFW, l'Ea moyen est de 230,71 kJ/mol et 230,11 kJ/mol. De plus, les valeurs de ΔH, ΔG et ΔS ont été analysées. En outre, la distribution de fréquence en appliquant le modèle DAEM est étudiée, et il y a six pseudo-composants impliqués dans la distribution de fréquence pour la combustion. Pour la prédiction de la dégradation thermique des boues d'épuration de la tannerie, un réseau neuronal artificiel (RNA) du modèle MLP-3-7-1 a été utilisé. Ce modèle montre qu'il existe un bon accord entre les valeurs expérimentales et les valeurs prédites. Dans l'ensemble, cette étude souligne l'importance de l'ANN pour la prédiction du comportement de combustion de la biomasse avec plus de précision. La eliminación y la gestión de los lodos de depuración de las curtidurías es un problema difícil para las industrias del cuero debido a sus efectos adversos sobre el medio ambiente. En este estudio se empleó la caracterización y evaluación detallada utilizando parámetros cinéticos y termodinámicos de los lodos de depuradora de curtiduría en ambiente de combustión. Se emplearon métodos sin modelos isoconversionales como Ozawa-Flynn-Wall (OFW), Friedman y Kissinger-Akahira-Sunose (KAS) para investigar la cinética y los parámetros termodinámicos en el ambiente aéreo. Se informaron las energías de activación (Ea) para Friedman, KAS y OFW. Las curvas DTG a la velocidad de calentamiento de 5, 10, 20 y 40 °C/min muestran las conversiones diversificadas en tres etapas principales. Los valores de Ea para los rangos del modelo son Friedman (148.96 kJ/mol-395.23 kJ/mol), KAS (169.65 kJ/mol-383.75 kJ/mol) y OFW (176.44 kJ/mol-377.85 kJ/mol). La Ea media para Friedman es de 226,04 kJ/mol, mientras que para KAS y OFW la Ea media es de 230,71 kJ/mol y 230,11 kJ/mol. Además, se analizaron los valores de ΔH, ΔG y ΔS. Además, se investiga la distribución de frecuencias mediante la aplicación del modelo DAEM, y hay seis pseudocomponentes involucrados en la distribución de frecuencias para la combustión. Para la predicción de la degradación térmica de los lodos de depuradora de la curtiduría se utilizó una red neuronal artificial (ANN) del modelo MLP-3-7-1. Este modelo muestra que existe una buena concordancia entre los valores experimentales y los pronosticados. En general, este estudio destaca la importancia de la ANN para la predicción del comportamiento de combustión de la biomasa con mayor precisión. The disposal and the management of sewage sludge from tanneries is a challenging issue for the leather industries because of their adverse effect on the environment. In this study the detailed characterization and assessment using kinetic and thermodynamic parameters of the tannery sewage sludge in combustion environment was employed. Isoconversional model-free methods like Ozawa-Flynn-Wall (OFW), Friedman and Kissinger-Akahira-Sunose (KAS) were employed to investigate the kinetics and the thermodynamic parameters in the air environment. Activation energies (Ea) for the Friedman, KAS and OFW were reported. The DTG curves at the heating rate of 5, 10, 20 and 40 °C/min show the diversified conversions in three major stages. The Ea values for the model ranges are Friedman (148.96 kJ/mol-395.23 kJ/mol), KAS (169.65 kJ/mol-383.75 kJ/mol) and OFW (176.44 kJ/mol-377.85 kJ/mol). The average Ea for the Friedman is 226.04 kJ/mol while for KAS and OFW the average Ea is 230.71 kJ/mol and 230.11 kJ/mol. Moreover, the values of ΔH, ΔG, and ΔS were analysed. Furthermore, the frequency distribution by applying the DAEM model is investigated, and there are six pseudo-components involved in the frequency distribution for combustion. For the thermal degradation prediction of the sewage sludge from the tannery, an artificial neural network (ANN) of the MLP-3-7-1 model was used. This model shows that there is good agreement between the experimental and the predicted values. Overall, this study highlights the importance of the ANN for the prediction of combustion behaviour of biomass with more accuracy. يمثل التخلص من حمأة الصرف الصحي وإدارتها من المدابغ مشكلة صعبة بالنسبة للصناعات الجلدية بسبب تأثيرها السلبي على البيئة. في هذه الدراسة، تم استخدام التوصيف والتقييم التفصيليين باستخدام المعلمات الحركية والديناميكية الحرارية لحمأة المجاري المدبغة في بيئة الاحتراق. تم استخدام طرق خالية من النماذج المتساوية مثل Ozawa - Flynn - Wall (OFW) و Friedman و Kissinger - Akahira - Sunose (KAS) للتحقيق في الحركية والمعلمات الديناميكية الحرارية في بيئة الهواء. تم الإبلاغ عن طاقات التنشيط (EA) لـ Friedman و KAS و OFW. تُظهر منحنيات DTG بمعدل تسخين 5 و 10 و 20 و 40 درجة مئوية/دقيقة التحويلات المتنوعة في ثلاث مراحل رئيسية. قيم Ea لنطاقات النموذج هي Friedman (148.96 kJ/mol-395.23 kJ/mol) و KAS (169.65 kJ/mol-383.75 kJ/mol) و OFW (176.44 kJ/mol-377.85 kJ/mol). يبلغ متوسط Ea لـ Friedman 226.04 كيلو جول/مول بينما يبلغ متوسط Ea لـ KAS و OFW 230.71 كيلو جول/مول و 230.11 كيلو جول/مول. علاوة على ذلك، تم تحليل قيم ΔH و ΔG و ΔS. علاوة على ذلك، يتم التحقيق في توزيع التردد من خلال تطبيق نموذج DAEM، وهناك ستة مكونات زائفة تشارك في توزيع التردد للاحتراق. للتنبؤ بالتدهور الحراري لحمأة الصرف الصحي من المدبغة، تم استخدام شبكة عصبية اصطناعية (ANN) من نموذج MLP -3-7-1. يوضح هذا النموذج أن هناك اتفاقًا جيدًا بين القيم التجريبية والمتوقعة. بشكل عام، تسلط هذه الدراسة الضوء على أهمية ANN للتنبؤ بسلوك الاحتراق للكتلة الحيوية بدقة أكبر.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4218402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4218402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Abdul Waheed; Salman Naqvi; Imtiaz Ali;doi: 10.3390/en15218297
The co-torrefaction of several biomasses may be a viable solution in the study area, as it produces biofuels and addresses waste-treatment concerns. This review evaluates biomass through ultimate, proximate, and FTIR analyses, and the mechanism of the co-torrefaction process is observed for product quality with a synergistic effect. Furthermore, the parameters of co-torrefaction, including temperature, reaction time, mass yield, energy yield, and the composition of the H/C and O/C ratio of the co-torrefied materials, are similar to those for coal composition. Different reactor types, such as fixed-bed, fluidized-bed, microwave, and batch reactors, are used for co-torrefaction, in which biomass blends with optimized blend ratios. The co-torrefaction process increases the bio-solid yield and heating value, the capacity to adsorb carbon dioxide, and the renewable fuel used for gasification. One of the objectives of this study is to adopt a process that must be viable, green, and sustainable without generating pollution. For this reason, microwave co-torrefaction (MCT) has been used in many recent studies to transform waste and biomass materials into an alternative fuel using a microwave reactor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 TurkeyPublisher:Elsevier BV Salman Raza Naqvi; Imtiaz Ali; Saqib Nasir; Syed Ali Ammar Taqvi; A.E. Atabani; Wei-Hsin Chen;Abstract Agro-industrial residue is widely considered as a rich source of energy, with varying characteristics depending on the geographical region or origin from where it is collected. Rice husk, bagasse, corncob, wheat straw and wood chips do not find many applications in Pakistan. As they are available in large quantities and at lower cost, therefore it makes them a favorable candidate for bioenergy. In this study, five agro-industrial residues, of Pakistani origin, were thermally degraded in the absence of air and at a constant heating rate of 5 °C min−1. Kinetics of the pyrolysis process was performed using Coats-Redfern method at five reaction mechanisms. Corncob was found to degrade at lower temperature with fastest rate as compared to all the other wastes. The kinetic parameters obtained from Coats-Redfern method were used to evaluate the thermodynamic behavior of these wastes and afterwards a comparison was drawn. Based on the ascending order of the activation energy, the residues can be classified in terms of preference as corncob > rice husk > wood chips > wheat straw > bagasse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SwedenPublisher:Elsevier BV Muhammad Naveed; Jawad Gul; Muhammad Nouman Aslam Khan; Salman Raza Naqvi; Libor Štěpanec; Imtiaz Ali;La biomasse torréfiée est une source d'énergie verte vitale avec des applications dans les économies circulaires, répondant aux résidus agricoles et à la demande croissante en énergie. Dans cette étude, des modèles ML ont été utilisés pour prédire la durabilité (%) et la perte de masse (%). Tout d'abord, les données ont été collectées et prétraitées, et leur distribution et corrélation ont été analysées. La régression du processus gaussien (GPR) et l'ensemble des arbres d'apprentissage (ELT) ont ensuite été formés et testés sur 80 % et 20 % des données, respectivement. Les deux modèles d'apprentissage automatique ont été optimisés grâce à l'algorithme génétique (GA) et à l'optimisation de l'essaim de particules (PSO) pour la sélection des caractéristiques et le réglage des hyperparamètres. GPR-PSO démontre une excellente précision dans la prédiction de la durabilité (%), atteignant un score R2 d'entraînement de 0,9469 et une valeur RMSE de 0,0785. GPR-GA présente des performances exceptionnelles dans la prédiction de la perte de masse (%), atteignant une valeur R2 d'entraînement de 1 et une valeur RMSE de 9,7373e-05. La température et la durée pendant la torréfaction sont des variables cruciales qui sont conformes aux conclusions tirées des études précédentes. Les modèles GPR et ELT prédisent et optimisent efficacement la qualité de la biomasse torréfiée, ce qui améliore la densité d'énergie, les propriétés mécaniques, la broyabilité et la stabilité au stockage. En outre, ils contribuent à l'agriculture durable en réduisant les émissions de carbone, en améliorant le rapport coût-efficacité et en aidant à la conception et au développement de granuleuses. Cette optimisation augmente non seulement la densité énergétique et la broyabilité, mais améliore également l'efficacité de la distribution des nutriments, la rétention d'eau et réduit l'empreinte carbone. Par conséquent, ces résultats soutiennent la biodiversité et favorisent des pratiques agricoles, écosystémiques et environnementales durables. La biomasa torrefactada es una fuente de energía verde vital con aplicaciones en economías circulares, que aborda los residuos agrícolas y las crecientes demandas de energía. En este estudio, se utilizaron modelos de ML para predecir la durabilidad (%) y la pérdida de masa (%). En primer lugar, se recogieron y preprocesaron los datos, y se analizó su distribución y correlación. La regresión de procesos gaussianos (GPR) y los árboles de aprendizaje en conjunto (ELT) se capacitaron y evaluaron en el 80% y el 20% de los datos, respectivamente. Ambos modelos de aprendizaje automático se sometieron a optimización a través del algoritmo genético (GA) y la optimización de enjambre de partículas (PSO) para la selección de características y el ajuste de hiperparámetros. GPR-PSO demuestra una excelente precisión en la predicción de la durabilidad (%), logrando una puntuación R2 de entrenamiento de 0.9469 y un valor RMSE de 0.0785. GPR-GA exhibe un rendimiento excepcional en la predicción de la pérdida de masa (%), logrando un valor R2 de entrenamiento de 1 y un valor RMSE de 9.7373e-05. La temperatura y la duración durante la torrefacción son variables cruciales que están en línea con las conclusiones extraídas de estudios previos. Los modelos GPR y ELT predicen y optimizan de manera efectiva la calidad de la biomasa torrefactada, lo que lleva a una mayor densidad de energía, propiedades mecánicas, capacidad de molienda y estabilidad de almacenamiento. Además, contribuyen a la agricultura sostenible al reducir las emisiones de carbono, mejorar la rentabilidad y ayudar en el diseño y desarrollo de peletizadores. Esta optimización no solo aumenta la densidad de energía y la capacidad de molienda, sino que también mejora la eficiencia del suministro de nutrientes, la retención de agua y reduce la huella de carbono. En consecuencia, estos resultados apoyan la biodiversidad y promueven prácticas agrícolas, ecosistémicas y ambientales sostenibles. Torrefied biomass is a vital green energy source with applications in circular economies, addressing agricultural residue and rising energy demands. In this study, ML models were used to predict durability (%) and mass loss (%). Firstly, data was collected and preprocessed, and its distribution and correlation were analyzed. Gaussian Process Regression (GPR) and Ensemble Learning Trees (ELT) were then trained and tested on 80% and 20% of the data, respectively. Both machine learning models underwent optimization through Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for feature selection and hyperparameter tuning. GPR-PSO demonstrates excellent accuracy in predicting durability (%), achieving a training R2 score of 0.9469 and an RMSE value of 0.0785. GPR-GA exhibits exceptional performance in predicting mass loss (%), achieving a training R2 value of 1 and an RMSE value of 9.7373e-05. The temperature and duration during torrefaction are crucial variables that are in line with the conclusions drawn from previous studies. GPR and ELT models effectively predict and optimize torrefied biomass quality, leading to enhanced energy density, mechanical properties, grindability, and storage stability. Additionally, they contribute to sustainable agriculture by reducing carbon emissions, improving cost-effectiveness, and aiding in the design and development of pelletizers. This optimization not only increases energy density and grindability but also enhances nutrient delivery efficiency, water retention, and reduces the carbon footprint. Consequently, these outcomes support biodiversity and promote sustainable agricultural, ecosystem, and environmental practices. تعد الكتلة الحيوية Torrefied مصدرًا حيويًا للطاقة الخضراء مع تطبيقات في الاقتصادات الدائرية، ومعالجة المخلفات الزراعية وارتفاع الطلب على الطاقة. في هذه الدراسة، تم استخدام نماذج التعلم الآلي للتنبؤ بالمتانة (٪) وفقدان الكتلة (٪). أولاً، تم جمع البيانات ومعالجتها مسبقًا، وتم تحليل توزيعها وارتباطها. ثم تم تدريب انحدار العملية الغاوسية (GPR) وأشجار التعلم الجماعي (ELT) واختبارها على 80 ٪ و 20 ٪ من البيانات، على التوالي. خضع كلا نموذجي التعلم الآلي للتحسين من خلال الخوارزمية الوراثية (GA) وتحسين سرب الجسيمات (PSO) لاختيار الميزات وضبط المعلمات الفائقة. يُظهر GPR - PSO دقة ممتازة في التنبؤ بالمتانة (٪)، وتحقيق درجة تدريب R2 تبلغ 0.9469 وقيمة RMSE تبلغ 0.0785. يُظهر GPR - GA أداءً استثنائيًا في التنبؤ بفقدان الكتلة (٪)، وتحقيق قيمة R2 للتدريب بقيمة 1 وقيمة RMSE بقيمة 9.7373e-05. تعد درجة الحرارة والمدة أثناء التآكل من المتغيرات الحاسمة التي تتماشى مع الاستنتاجات المستخلصة من الدراسات السابقة. تتنبأ نماذج GPR و ELT بفعالية بجودة الكتلة الحيوية المحسنة وتحسنها، مما يؤدي إلى تعزيز كثافة الطاقة والخصائص الميكانيكية وقابلية الطحن واستقرار التخزين. بالإضافة إلى ذلك، فإنها تساهم في الزراعة المستدامة من خلال الحد من انبعاثات الكربون، وتحسين الفعالية من حيث التكلفة، والمساعدة في تصميم وتطوير الكريات. لا يؤدي هذا التحسين إلى زيادة كثافة الطاقة وقابلية الطحن فحسب، بل يعزز أيضًا كفاءة توصيل المغذيات واحتباس الماء ويقلل من البصمة الكربونية. وبالتالي، تدعم هذه النتائج التنوع البيولوجي وتعزز الممارسات الزراعية والنظم الإيكولوجية والبيئية المستدامة.
Chemical Engineering... arrow_drop_down Chemical Engineering Journal AdvancesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Karlstads UniversitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceja.2024.100620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Journal AdvancesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Karlstads UniversitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceja.2024.100620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Abdul Ahad Khan; Jawad Gul; Salman Raza Naqvi; Imtiaz Ali; Wasif Farooq; Rabia Liaqat; Hamad AlMohamadi; Libor Štěpanec; Dagmar Juchelková;pmid: 35793745
Textile industry utilize a massive amount of dyes for coloring. The dye-containing effluent is released into wastewater along with heavy metals that are part of dye structure. The treatment of textile industry wastewater using conventional techniques (coagulation, membrane technique, electrolysis ion exchange, etc.) is uneconomical and less efficient (for a low concentration of pollutants). Moreover, most of these techniques produce toxic sludge, making them less environmentally friendly. Algae base industry is growing for food, cosmetics and energy needs. Algae biomass in unique compared to lignocellulosic biomass due to presence of various functional group on its surface and presence of various cations. These two characteristics are unique for biochar as a tool for environmental decontamination. Algae biomass contain functional groups and cations that can be effective for removal of organic contaminants (dyes) and heavy metals. Algae can be micro and macro and both have entirely different biomass composition which will lead to a synthesis of different biochar even under same synthesis process. This study reviews the recent progress in the development of an economically viable and eco-friendly approach for textile industry wastewater using algae biomass-derived absorbents. The strategy employed microalgal biochar to remove organic pollutants (dyes) and heavy metals from textile effluents by biosorption. This article discusses different methods for preparing algal biochar (pyrolysis, hydrothermal carbonization and torrefaction), and the adsorption capacity of biochar for dyes and heavy metals. Work on hydrothermal carbonization and torrefaction of microalgal biomass for biochar is limited. Variation in structural and functional groups changes on biochar compared to original microalgal biomass are profound in contract with lignocellulosic biomass. Existing Challenges, future goals, and the development of these technologies at the pilot level are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2022.135565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2022.135565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Muhammad Ishfaq; Azeem Asghar; Imtiaz Ali; Aqib Zafar Khan; Ayesha Shahid; Ning Wang; Hui Zhu; Hesham R. El-Seedi; Muhammad Aamer Mehmood; Chen-Guang Liu;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 MalaysiaPublisher:Elsevier BV Authors: Naqvi, Salman Raza; Khoja, Asif Hussain; Ali, Imtiaz; Muhammad Naqvi, Muhammad Naqvi; +4 AuthorsNaqvi, Salman Raza; Khoja, Asif Hussain; Ali, Imtiaz; Muhammad Naqvi, Muhammad Naqvi; Noor, Tayyaba; Ahmad, Awais; Luque, Rafael; Saidina Amin, Nor Aishah;Biomass pyrolysis is one of the cleaner ways to produce bioenergy focusing on bio-oil. The high oxygen content of oxygen in bio-oil limits its application in transportation applications. The deoxygenation of bio-oil using various catalyst systems is required to upgrade the bio-oil. Herein, we presented the scientometric analysis of microporous zeolites for deoxygenation of biomass-derived bio-oil. The state of the art review of biomass catalytic deoxygenation using zeolite-based materials is elucidated. A special focus on the role of catalyst physicochemical properties and degree of deoxygenation is Furthermore, the reaction pathways for different zeolites for bio-oil upgradation are presented. Finally, the technology readiness level is assessed and future recommendations are also presented.
Fuel arrow_drop_down Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Saudi ArabiaPublisher:Frontiers Media SA Wasif Farooq; Imtiaz Ali; Salman Raza Naqvi; Mohd Sajid; Hassnain Abbas Khan; Sagir Adamu; Sagir Adamu;handle: 10754/674139
This study investigates the efficacy of a prepared Ni/θ-Al2O3 catalyst during the pyrolytic conversion of Parachlorella kessleri HY-6 and compares the results with non-catalytic conversion. The catalyst was characterized by techniques such as Brunauer–Emmett–Teller (BET) for surface area, acidity, and X-ray powder diffraction (XRD). Isoconversional and combined kinetic methods were used to study the pyrolytic kinetics of the process. Ni/θ-Al2O3 was used at 10, 20, and 30% of the algal biomass. The addition of Ni/θ-Al2O3 facilitated the conversion by lowering the mean activation energy during pyrolysis. The catalytic effect was more pronounced at lower and higher conversions. The presence of the catalyst facilitated the pyrolysis as indicated by the lower value of activation energy and ∆H, and ∆G. Gases evolved during pyrolysis were qualitatively analyzed by FTIR to see the effect of catalyst on evolved gas composition during the pyrolysis process.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.775037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.775037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Malaysia, United Kingdom, MalaysiaPublisher:Elsevier BV Junaid Ahmad; Muhammad Awais; Umer Rashid; Chawalit Ngamcharussrivichai; Salman Raza Naqvi; Imtiaz Ali;Since industrial development and globalization of the world, fossil fuels remain a major source of energy for almost all sectors of life. Fossil fuels, without doubt, play a vital role in the development of today’s world. However, there are increasing reservations about the consumption of fossil fuels due to their detrimental impact on our ecosystem. In recent decades, biodiesel has attracted much attention as a promising replacement for fossil fuel-based diesel, especially in the transportation sector. Biodiesel is a non-toxic, environmentally friendly, and carbon-free fuel that can be made from any kind of vegetable oil or fat. In recent developments, numerous techniques have been developed to efficiently prepare biodiesel from oil/fats. Therefore, in this paper, we cover a new advancement in techniques used for the conversion of oil/fat to biodiesel and the role of artificial intelligence (AI). AI approaches help predict the effectiveness of biodiesel production techniques and optimize the process, in addition to minimizing the cost of the process. The AI-enabled biodiesel prediction methods consist of several stages, i.e., biodiesel data collection, biodiesel data preprocessing, developing, and tuning machine learning (ML) algorithm on biodiesel data, and predicting unknown biodiesel properties. Therefore, the main purpose of applying AI to the biodiesel production process is to improve the process optimization and to develop AI models for fuel properties measurements and ultimately reduce the cost of the product. Because these problems have not been addressed previously, we hope that our analysis will help future researchers identify the appropriate technique and feedstock to produce high-quality biodiesel.
Fuel arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.127379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.127379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Abdul Hai; G. Bharath; Imtiaz Ali; Muhammad Daud; Israa Othman; K. Rambabu; Mohammad Abu Haija; Shadi W. Hasan; Fawzi Banat;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Arslan Khan; Imtiaz Ali; Wasif Farooq; Salman Raza Naqvi; Muhammad Taqi Mehran; Ameen Shahid; Rabia Liaquat; Muhammad Waqas Anjum; Muhammad Naqvi;L'élimination et la gestion des boues d'épuration des tanneries est un enjeu difficile pour les industries du cuir en raison de leurs effets néfastes sur l'environnement. Dans cette étude, la caractérisation et l'évaluation détaillées à l'aide de paramètres cinétiques et thermodynamiques des boues d'épuration de tannerie dans un environnement de combustion ont été utilisées. Des méthodes sans modèle d'isoconversion comme Ozawa-Flynn-Wall (OFW), Friedman et Kissinger-Akahira-Sunose (KAS) ont été utilisées pour étudier la cinétique et les paramètres thermodynamiques dans l'environnement de l'air. Les énergies d'activation (Ea) pour le Friedman, le KAS et l'OFW ont été rapportées. Les courbes DTG à la vitesse de chauffe de 5, 10, 20 et 40 °C/min montrent les conversions diversifiées en trois étapes majeures. Les valeurs Ea pour les gammes de modèles sont Friedman (148,96 kJ/mol-395,23 kJ/mol), KAS (169,65 kJ/mol-383,75 kJ/mol) et OFW (176,44 kJ/mol-377,85 kJ/mol). L'Ea moyen pour le Friedman est de 226,04 kJ/mol tandis que pour KAS et OFW, l'Ea moyen est de 230,71 kJ/mol et 230,11 kJ/mol. De plus, les valeurs de ΔH, ΔG et ΔS ont été analysées. En outre, la distribution de fréquence en appliquant le modèle DAEM est étudiée, et il y a six pseudo-composants impliqués dans la distribution de fréquence pour la combustion. Pour la prédiction de la dégradation thermique des boues d'épuration de la tannerie, un réseau neuronal artificiel (RNA) du modèle MLP-3-7-1 a été utilisé. Ce modèle montre qu'il existe un bon accord entre les valeurs expérimentales et les valeurs prédites. Dans l'ensemble, cette étude souligne l'importance de l'ANN pour la prédiction du comportement de combustion de la biomasse avec plus de précision. La eliminación y la gestión de los lodos de depuración de las curtidurías es un problema difícil para las industrias del cuero debido a sus efectos adversos sobre el medio ambiente. En este estudio se empleó la caracterización y evaluación detallada utilizando parámetros cinéticos y termodinámicos de los lodos de depuradora de curtiduría en ambiente de combustión. Se emplearon métodos sin modelos isoconversionales como Ozawa-Flynn-Wall (OFW), Friedman y Kissinger-Akahira-Sunose (KAS) para investigar la cinética y los parámetros termodinámicos en el ambiente aéreo. Se informaron las energías de activación (Ea) para Friedman, KAS y OFW. Las curvas DTG a la velocidad de calentamiento de 5, 10, 20 y 40 °C/min muestran las conversiones diversificadas en tres etapas principales. Los valores de Ea para los rangos del modelo son Friedman (148.96 kJ/mol-395.23 kJ/mol), KAS (169.65 kJ/mol-383.75 kJ/mol) y OFW (176.44 kJ/mol-377.85 kJ/mol). La Ea media para Friedman es de 226,04 kJ/mol, mientras que para KAS y OFW la Ea media es de 230,71 kJ/mol y 230,11 kJ/mol. Además, se analizaron los valores de ΔH, ΔG y ΔS. Además, se investiga la distribución de frecuencias mediante la aplicación del modelo DAEM, y hay seis pseudocomponentes involucrados en la distribución de frecuencias para la combustión. Para la predicción de la degradación térmica de los lodos de depuradora de la curtiduría se utilizó una red neuronal artificial (ANN) del modelo MLP-3-7-1. Este modelo muestra que existe una buena concordancia entre los valores experimentales y los pronosticados. En general, este estudio destaca la importancia de la ANN para la predicción del comportamiento de combustión de la biomasa con mayor precisión. The disposal and the management of sewage sludge from tanneries is a challenging issue for the leather industries because of their adverse effect on the environment. In this study the detailed characterization and assessment using kinetic and thermodynamic parameters of the tannery sewage sludge in combustion environment was employed. Isoconversional model-free methods like Ozawa-Flynn-Wall (OFW), Friedman and Kissinger-Akahira-Sunose (KAS) were employed to investigate the kinetics and the thermodynamic parameters in the air environment. Activation energies (Ea) for the Friedman, KAS and OFW were reported. The DTG curves at the heating rate of 5, 10, 20 and 40 °C/min show the diversified conversions in three major stages. The Ea values for the model ranges are Friedman (148.96 kJ/mol-395.23 kJ/mol), KAS (169.65 kJ/mol-383.75 kJ/mol) and OFW (176.44 kJ/mol-377.85 kJ/mol). The average Ea for the Friedman is 226.04 kJ/mol while for KAS and OFW the average Ea is 230.71 kJ/mol and 230.11 kJ/mol. Moreover, the values of ΔH, ΔG, and ΔS were analysed. Furthermore, the frequency distribution by applying the DAEM model is investigated, and there are six pseudo-components involved in the frequency distribution for combustion. For the thermal degradation prediction of the sewage sludge from the tannery, an artificial neural network (ANN) of the MLP-3-7-1 model was used. This model shows that there is good agreement between the experimental and the predicted values. Overall, this study highlights the importance of the ANN for the prediction of combustion behaviour of biomass with more accuracy. يمثل التخلص من حمأة الصرف الصحي وإدارتها من المدابغ مشكلة صعبة بالنسبة للصناعات الجلدية بسبب تأثيرها السلبي على البيئة. في هذه الدراسة، تم استخدام التوصيف والتقييم التفصيليين باستخدام المعلمات الحركية والديناميكية الحرارية لحمأة المجاري المدبغة في بيئة الاحتراق. تم استخدام طرق خالية من النماذج المتساوية مثل Ozawa - Flynn - Wall (OFW) و Friedman و Kissinger - Akahira - Sunose (KAS) للتحقيق في الحركية والمعلمات الديناميكية الحرارية في بيئة الهواء. تم الإبلاغ عن طاقات التنشيط (EA) لـ Friedman و KAS و OFW. تُظهر منحنيات DTG بمعدل تسخين 5 و 10 و 20 و 40 درجة مئوية/دقيقة التحويلات المتنوعة في ثلاث مراحل رئيسية. قيم Ea لنطاقات النموذج هي Friedman (148.96 kJ/mol-395.23 kJ/mol) و KAS (169.65 kJ/mol-383.75 kJ/mol) و OFW (176.44 kJ/mol-377.85 kJ/mol). يبلغ متوسط Ea لـ Friedman 226.04 كيلو جول/مول بينما يبلغ متوسط Ea لـ KAS و OFW 230.71 كيلو جول/مول و 230.11 كيلو جول/مول. علاوة على ذلك، تم تحليل قيم ΔH و ΔG و ΔS. علاوة على ذلك، يتم التحقيق في توزيع التردد من خلال تطبيق نموذج DAEM، وهناك ستة مكونات زائفة تشارك في توزيع التردد للاحتراق. للتنبؤ بالتدهور الحراري لحمأة الصرف الصحي من المدبغة، تم استخدام شبكة عصبية اصطناعية (ANN) من نموذج MLP -3-7-1. يوضح هذا النموذج أن هناك اتفاقًا جيدًا بين القيم التجريبية والمتوقعة. بشكل عام، تسلط هذه الدراسة الضوء على أهمية ANN للتنبؤ بسلوك الاحتراق للكتلة الحيوية بدقة أكبر.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4218402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4218402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Abdul Waheed; Salman Naqvi; Imtiaz Ali;doi: 10.3390/en15218297
The co-torrefaction of several biomasses may be a viable solution in the study area, as it produces biofuels and addresses waste-treatment concerns. This review evaluates biomass through ultimate, proximate, and FTIR analyses, and the mechanism of the co-torrefaction process is observed for product quality with a synergistic effect. Furthermore, the parameters of co-torrefaction, including temperature, reaction time, mass yield, energy yield, and the composition of the H/C and O/C ratio of the co-torrefied materials, are similar to those for coal composition. Different reactor types, such as fixed-bed, fluidized-bed, microwave, and batch reactors, are used for co-torrefaction, in which biomass blends with optimized blend ratios. The co-torrefaction process increases the bio-solid yield and heating value, the capacity to adsorb carbon dioxide, and the renewable fuel used for gasification. One of the objectives of this study is to adopt a process that must be viable, green, and sustainable without generating pollution. For this reason, microwave co-torrefaction (MCT) has been used in many recent studies to transform waste and biomass materials into an alternative fuel using a microwave reactor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 TurkeyPublisher:Elsevier BV Salman Raza Naqvi; Imtiaz Ali; Saqib Nasir; Syed Ali Ammar Taqvi; A.E. Atabani; Wei-Hsin Chen;Abstract Agro-industrial residue is widely considered as a rich source of energy, with varying characteristics depending on the geographical region or origin from where it is collected. Rice husk, bagasse, corncob, wheat straw and wood chips do not find many applications in Pakistan. As they are available in large quantities and at lower cost, therefore it makes them a favorable candidate for bioenergy. In this study, five agro-industrial residues, of Pakistani origin, were thermally degraded in the absence of air and at a constant heating rate of 5 °C min−1. Kinetics of the pyrolysis process was performed using Coats-Redfern method at five reaction mechanisms. Corncob was found to degrade at lower temperature with fastest rate as compared to all the other wastes. The kinetic parameters obtained from Coats-Redfern method were used to evaluate the thermodynamic behavior of these wastes and afterwards a comparison was drawn. Based on the ascending order of the activation energy, the residues can be classified in terms of preference as corncob > rice husk > wood chips > wheat straw > bagasse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SwedenPublisher:Elsevier BV Muhammad Naveed; Jawad Gul; Muhammad Nouman Aslam Khan; Salman Raza Naqvi; Libor Štěpanec; Imtiaz Ali;La biomasse torréfiée est une source d'énergie verte vitale avec des applications dans les économies circulaires, répondant aux résidus agricoles et à la demande croissante en énergie. Dans cette étude, des modèles ML ont été utilisés pour prédire la durabilité (%) et la perte de masse (%). Tout d'abord, les données ont été collectées et prétraitées, et leur distribution et corrélation ont été analysées. La régression du processus gaussien (GPR) et l'ensemble des arbres d'apprentissage (ELT) ont ensuite été formés et testés sur 80 % et 20 % des données, respectivement. Les deux modèles d'apprentissage automatique ont été optimisés grâce à l'algorithme génétique (GA) et à l'optimisation de l'essaim de particules (PSO) pour la sélection des caractéristiques et le réglage des hyperparamètres. GPR-PSO démontre une excellente précision dans la prédiction de la durabilité (%), atteignant un score R2 d'entraînement de 0,9469 et une valeur RMSE de 0,0785. GPR-GA présente des performances exceptionnelles dans la prédiction de la perte de masse (%), atteignant une valeur R2 d'entraînement de 1 et une valeur RMSE de 9,7373e-05. La température et la durée pendant la torréfaction sont des variables cruciales qui sont conformes aux conclusions tirées des études précédentes. Les modèles GPR et ELT prédisent et optimisent efficacement la qualité de la biomasse torréfiée, ce qui améliore la densité d'énergie, les propriétés mécaniques, la broyabilité et la stabilité au stockage. En outre, ils contribuent à l'agriculture durable en réduisant les émissions de carbone, en améliorant le rapport coût-efficacité et en aidant à la conception et au développement de granuleuses. Cette optimisation augmente non seulement la densité énergétique et la broyabilité, mais améliore également l'efficacité de la distribution des nutriments, la rétention d'eau et réduit l'empreinte carbone. Par conséquent, ces résultats soutiennent la biodiversité et favorisent des pratiques agricoles, écosystémiques et environnementales durables. La biomasa torrefactada es una fuente de energía verde vital con aplicaciones en economías circulares, que aborda los residuos agrícolas y las crecientes demandas de energía. En este estudio, se utilizaron modelos de ML para predecir la durabilidad (%) y la pérdida de masa (%). En primer lugar, se recogieron y preprocesaron los datos, y se analizó su distribución y correlación. La regresión de procesos gaussianos (GPR) y los árboles de aprendizaje en conjunto (ELT) se capacitaron y evaluaron en el 80% y el 20% de los datos, respectivamente. Ambos modelos de aprendizaje automático se sometieron a optimización a través del algoritmo genético (GA) y la optimización de enjambre de partículas (PSO) para la selección de características y el ajuste de hiperparámetros. GPR-PSO demuestra una excelente precisión en la predicción de la durabilidad (%), logrando una puntuación R2 de entrenamiento de 0.9469 y un valor RMSE de 0.0785. GPR-GA exhibe un rendimiento excepcional en la predicción de la pérdida de masa (%), logrando un valor R2 de entrenamiento de 1 y un valor RMSE de 9.7373e-05. La temperatura y la duración durante la torrefacción son variables cruciales que están en línea con las conclusiones extraídas de estudios previos. Los modelos GPR y ELT predicen y optimizan de manera efectiva la calidad de la biomasa torrefactada, lo que lleva a una mayor densidad de energía, propiedades mecánicas, capacidad de molienda y estabilidad de almacenamiento. Además, contribuyen a la agricultura sostenible al reducir las emisiones de carbono, mejorar la rentabilidad y ayudar en el diseño y desarrollo de peletizadores. Esta optimización no solo aumenta la densidad de energía y la capacidad de molienda, sino que también mejora la eficiencia del suministro de nutrientes, la retención de agua y reduce la huella de carbono. En consecuencia, estos resultados apoyan la biodiversidad y promueven prácticas agrícolas, ecosistémicas y ambientales sostenibles. Torrefied biomass is a vital green energy source with applications in circular economies, addressing agricultural residue and rising energy demands. In this study, ML models were used to predict durability (%) and mass loss (%). Firstly, data was collected and preprocessed, and its distribution and correlation were analyzed. Gaussian Process Regression (GPR) and Ensemble Learning Trees (ELT) were then trained and tested on 80% and 20% of the data, respectively. Both machine learning models underwent optimization through Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for feature selection and hyperparameter tuning. GPR-PSO demonstrates excellent accuracy in predicting durability (%), achieving a training R2 score of 0.9469 and an RMSE value of 0.0785. GPR-GA exhibits exceptional performance in predicting mass loss (%), achieving a training R2 value of 1 and an RMSE value of 9.7373e-05. The temperature and duration during torrefaction are crucial variables that are in line with the conclusions drawn from previous studies. GPR and ELT models effectively predict and optimize torrefied biomass quality, leading to enhanced energy density, mechanical properties, grindability, and storage stability. Additionally, they contribute to sustainable agriculture by reducing carbon emissions, improving cost-effectiveness, and aiding in the design and development of pelletizers. This optimization not only increases energy density and grindability but also enhances nutrient delivery efficiency, water retention, and reduces the carbon footprint. Consequently, these outcomes support biodiversity and promote sustainable agricultural, ecosystem, and environmental practices. تعد الكتلة الحيوية Torrefied مصدرًا حيويًا للطاقة الخضراء مع تطبيقات في الاقتصادات الدائرية، ومعالجة المخلفات الزراعية وارتفاع الطلب على الطاقة. في هذه الدراسة، تم استخدام نماذج التعلم الآلي للتنبؤ بالمتانة (٪) وفقدان الكتلة (٪). أولاً، تم جمع البيانات ومعالجتها مسبقًا، وتم تحليل توزيعها وارتباطها. ثم تم تدريب انحدار العملية الغاوسية (GPR) وأشجار التعلم الجماعي (ELT) واختبارها على 80 ٪ و 20 ٪ من البيانات، على التوالي. خضع كلا نموذجي التعلم الآلي للتحسين من خلال الخوارزمية الوراثية (GA) وتحسين سرب الجسيمات (PSO) لاختيار الميزات وضبط المعلمات الفائقة. يُظهر GPR - PSO دقة ممتازة في التنبؤ بالمتانة (٪)، وتحقيق درجة تدريب R2 تبلغ 0.9469 وقيمة RMSE تبلغ 0.0785. يُظهر GPR - GA أداءً استثنائيًا في التنبؤ بفقدان الكتلة (٪)، وتحقيق قيمة R2 للتدريب بقيمة 1 وقيمة RMSE بقيمة 9.7373e-05. تعد درجة الحرارة والمدة أثناء التآكل من المتغيرات الحاسمة التي تتماشى مع الاستنتاجات المستخلصة من الدراسات السابقة. تتنبأ نماذج GPR و ELT بفعالية بجودة الكتلة الحيوية المحسنة وتحسنها، مما يؤدي إلى تعزيز كثافة الطاقة والخصائص الميكانيكية وقابلية الطحن واستقرار التخزين. بالإضافة إلى ذلك، فإنها تساهم في الزراعة المستدامة من خلال الحد من انبعاثات الكربون، وتحسين الفعالية من حيث التكلفة، والمساعدة في تصميم وتطوير الكريات. لا يؤدي هذا التحسين إلى زيادة كثافة الطاقة وقابلية الطحن فحسب، بل يعزز أيضًا كفاءة توصيل المغذيات واحتباس الماء ويقلل من البصمة الكربونية. وبالتالي، تدعم هذه النتائج التنوع البيولوجي وتعزز الممارسات الزراعية والنظم الإيكولوجية والبيئية المستدامة.
Chemical Engineering... arrow_drop_down Chemical Engineering Journal AdvancesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Karlstads UniversitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceja.2024.100620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Journal AdvancesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Karlstads UniversitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceja.2024.100620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Abdul Ahad Khan; Jawad Gul; Salman Raza Naqvi; Imtiaz Ali; Wasif Farooq; Rabia Liaqat; Hamad AlMohamadi; Libor Štěpanec; Dagmar Juchelková;pmid: 35793745
Textile industry utilize a massive amount of dyes for coloring. The dye-containing effluent is released into wastewater along with heavy metals that are part of dye structure. The treatment of textile industry wastewater using conventional techniques (coagulation, membrane technique, electrolysis ion exchange, etc.) is uneconomical and less efficient (for a low concentration of pollutants). Moreover, most of these techniques produce toxic sludge, making them less environmentally friendly. Algae base industry is growing for food, cosmetics and energy needs. Algae biomass in unique compared to lignocellulosic biomass due to presence of various functional group on its surface and presence of various cations. These two characteristics are unique for biochar as a tool for environmental decontamination. Algae biomass contain functional groups and cations that can be effective for removal of organic contaminants (dyes) and heavy metals. Algae can be micro and macro and both have entirely different biomass composition which will lead to a synthesis of different biochar even under same synthesis process. This study reviews the recent progress in the development of an economically viable and eco-friendly approach for textile industry wastewater using algae biomass-derived absorbents. The strategy employed microalgal biochar to remove organic pollutants (dyes) and heavy metals from textile effluents by biosorption. This article discusses different methods for preparing algal biochar (pyrolysis, hydrothermal carbonization and torrefaction), and the adsorption capacity of biochar for dyes and heavy metals. Work on hydrothermal carbonization and torrefaction of microalgal biomass for biochar is limited. Variation in structural and functional groups changes on biochar compared to original microalgal biomass are profound in contract with lignocellulosic biomass. Existing Challenges, future goals, and the development of these technologies at the pilot level are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2022.135565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2022.135565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu