- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Martens, S.; Liebscher, A.; Möller, F.; Henninges, J.; Kempka, T.; Lüth, S.; Norden, B.; Prevedel, B.; Szizybalski, A.; Zimmer, M.; Kühn, M.; Ketzin Group;AbstractAt Ketzin, located west of Berlin, the GFZ German Research Centre for Geosciences operates Europe's longest- running on-shore CO2 storage site. The Ketzin pilot site has been developed since 2004 and comprises three wells to depths of 750 m to 800 m and one shallow observation well, an injection facility and permanently installed monitoring devices. Since June 2008, CO2 is injected into 630 m to 650 m deep sandstone units (Upper Triassic Stuttgart Formation) in an anticlinal structure of the Northeast German Basin. Until mid of May 2012, about 61,400 t of CO2 have been stored safely. One of the most comprehensive monitoring concepts worldwide is applied and capable of detecting the behaviour of the CO2 in the subsurface. The Ketzin project demonstrates safe CO2 storage in a saline aquifer on a research scale and effective monitoring. This paper summarizes the key results obtained after four years of CO2 injection.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Roehmann, L.; Tillner, E.; Magri, F.; Kühn, M.; Kempka, T.;AbstractThe present study assesses potential geomechanical impacts of pore pressure increase induced by CO2 injection at a prospective CO2 storage site located in the Middle Bunter sequence in Eastern Germany. A 3D supraregional-scale structural geological model was implemented in one-way coupled hydro-mechanical simulations to assess caprock and fault integrity. Simulation results show a maximum ground uplift of 0.021 m at the end of CO2 injection, while shear failure observed at the simulated time steps does not achieve a significant density in the entire model. Consequently, reservoir, caprock and fault integrity are not compromised at any time of CO2 injection operation.
Refubium arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Refubium arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 GermanyPublisher:MDPI AG Maria Wetzel; Christopher Otto; Min Chen; Shakil Masum; Hywel Thomas; Tomasz Urych; Bartłomiej Bezak; Thomas Kempka;doi: 10.3390/en16073279
Deep un-mineable coal deposits are viable reservoirs for permanent and safe storage of carbon dioxide (CO2) due to their ability to adsorb large amounts of CO2 in the microporous coal structure. A reduced amount of CO2 released into the atmosphere contributes in turn to the mitigation of climate change. However, there are a number of geomechanical risks associated with the commercial-scale storage of CO2, such as potential fault or fracture reactivation, microseismic events, cap rock integrity or ground surface uplift. The present study assesses potential site-specific hydromechanical impacts for a coal deposit of the Upper Silesian Coal Basin by means of numerical simulations. For that purpose, a near-field model is developed to simulate the injection and migration of CO2, as well as the coal-CO2 interactions in the vicinity of horizontal wells along with the corresponding changes in permeability and stresses. The resulting effective stress changes are then integrated as boundary condition into a far-field numerical model to study the geomechanical response at site-scale. An extensive scenario analysis is carried out, consisting of 52 simulation runs, whereby the impacts of injection pressures, well arrangement within two target coal seams as well as the effect of different geological uncertainties (e.g., regional stress regime and rock properties) is examined for operational and post-operational scenarios. The injection-induced vertical displacements amount in maximum to 3.59 cm and 1.07 cm directly above the coal seam and at the ground surface, respectively. The results further demonstrate that neither fault slip nor dilation, as a potential consequence of slip, are to be expected during the investigated scenarios. Nevertheless, even if fault integrity is not compromised, dilation tendencies indicate that faults may be hydraulically conductive and could represent local pathways for upward fluid migration. Therefore, the site-specific stress regime has to be determined as accurately as possible by in-situ stress measurements, and also fault properties need to be accounted for an extensive risk assessment. The present study obtained a quantitative understanding of the geomechanical processes taking place at the operational and post-operational states, supporting the assessment and mitigation of environmental risks associated with CO2 storage in coal seams.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3279/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/7/3279/pdfData sources: SygmaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3279/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/7/3279/pdfData sources: SygmaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Authors: Kempka, T.; Norden, B.;Abstract Pilot-scale CO 2 storage has been performed at the Ketzin pilot site in Germany from 2007 to 2013 with about 67 kt of CO 2 injected into the Upper Triassic Stuttgart Formation, focussing on efficient monitoring and long-term prediction strategies. We employed inverse modelling to revise the latest static geological reservoir model, considering bottomhole well pressures observed during hydraulic testing. Simulation results exhibit very good agreement with the observations, providing one reasonable permeability realization for the Ketzin pilot site near-well area. Furthermore, an existing hypothesis on the presence of a low-thickness sandstone channel between two wells is supported by our findings.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Elsevier BV Authors: Afanasyev, A.; Kempka, T.; Kühn, M.; Melnik, O.;AbstractWe give an overview of the MUFITS reservoir simulator capabilities for modelling subsurface carbon dioxide storage using the EOS-modules GASSTORE and BLACKOIL. The GASSTORE module covers solid-liquid-gas flows of water, carbon dioxide and salt components, and includes an option for automatic generation of the BLACKOIL PVT tables. We test the simulator against several benchmarking studies and then consider an application case of CO2 storage at the Ketzin pilot site, Germany. The modelling results are in excellent agreement with those produced with common scientific and standard industrial simulators.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.10.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.10.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 GermanyPublisher:MDPI AG Authors: Christopher Otto; Thomas Kempka;doi: 10.3390/en10060739
Underground coal gasification (UCG) converts coal to a high-calorific synthesis gas for the production of fuels or chemical feedstock. UCG reactors are generally operated below hydrostatic pressure to avoid leakage of UCG fluids into overburden aquifers. Additionally, fluid flow out of and into the reactor is also determined by the presence of the steam jacket, emerging in close reactor vicinity due to the high temperatures generated in UCG operation. Aiming at improving the understanding of the substantial role of the steam jacket in UCG operations, we employ numerical non-isothermal multiphase flow simulations to assess the occurring multiphase fluid flow processes. For that purpose, we first validate our modeling approach against published data on the U.S. UCG field trials at Hanna and Hoe Creek, achieving a very good agreement between our simulation and the observed water balances. Then, we discuss the effect of coal seam permeability and UCG reactor pressure on the dynamic multiphase flow processes in the reactor’s vicinity. The presented modeling approach allows for the quantification and prediction of time-dependent temperature and pressure distributions in the reactor vicinity, and thus steam jacket dynamics as well as reactor water in- and outflows.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/6/739/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10060739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/6/739/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10060739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Germany, AustraliaPublisher:Elsevier BV Fei Huang; Christopher Juhlin; Thomas Kempka; Ben Norden; Fengjiao Zhang;handle: 20.500.11937/40443
Abstract In order to simulate the 3D time-lapse seismic response from real data in a consistent manner detailed 3D property models at the Ketzin pilot site were constructed by robustly integrating borehole and 3D reflection seismic data. The spatial CO 2 distribution and the detailed CO 2 density in the reservoir were derived from dynamic flow simulations that had been history-matched to the site monitoring data. Changes in velocity and density after CO 2 injection were estimated utilizing the CO 2 saturation distributions at two repeat times and fluid substitution models. 4D seismic data were generated by convolving the property models at different times with an extracted wavelet. Time-lapse analysis was performed to qualitatively and quantitatively investigate the changes in reflection amplitude after CO 2 injection. Comparison between the synthetic and real data at the corresponding time indicates that the 3D property models were built successfully and model the 3D time-lapse seismic response induced by CO 2 injection. A synthetic experiment with two different source wavelets was implemented to investigate the impact of source non-repeatability on the seismic amplitude anomaly. Analysis shows that the same or similar sources should be used in time-lapse seismic monitoring to minimize the impact of source non-repeatability on the monitoring.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesInternational Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesInternational Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2013 GermanyPublisher:Elsevier BV Authors: Streibel, M.; Nakaten, N.; Kempka, T.; Kühn, M.;AbstractExcess electricity from wind and sun can be transformed into hydrogen and with carbon dioxide subsequently into methane. When needed, electricity is regained in a combined cycle plant burning the methane. To close the carbon cycle carbon dioxide is captured on site. Two subsurface storage formations for both gases are required for the technology. Our regional showcase of two German cities, Potsdam and Brandenburg/Havel, demonstrates that about 30% of their electricity demand can be provided in that way, using 17.2% of renewable electricity generated in the State of Brandenburg. The overall efficiency of the system is 27.7%.
Energy Procedia arrow_drop_down GFZ German Research Centre for GeosciencesConference object . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesConference object . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down GFZ German Research Centre for GeosciencesConference object . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesConference object . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Authors: Wetzel, M.; Kempka, T.; Kühn, M.;Abstract Predicting variations in macroscopic mechanical rock behaviour due to microstructural changes, driven by mineral precipitation and dissolution is necessary to couple chemo-mechanical processes in geological subsurface simulations. We apply 3D numerical homogenization models to estimate Young’s moduli for five synthetic microstructures, and successfully validate our results for comparable geometries with the analytical Mori-Tanaka approach. Further, we demonstrate that considering specific rock microstructures is of paramount importance, since calculated elastic properties may deviate by up to 230 % for the same mineral composition. Moreover, agreement between simulated and experimentally determined Young’s moduli is significantly improved, when detailed spatial information are employed.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Funded by:EC | TOPSEC| TOPSAuthors: Otto, C.; Kempka, T.;AbstractCoupled thermo-mechanical simulations were carried out to quantify permeability changes in representative coal measure strata surrounding an underground coal gasification (UCG) reactor. Comparing temperature-dependent and -independent rock properties applied in our simulations, notable differences in rock failure behavior, but only insignificant differences in spatial permeability development are observed. Hence, temperature-dependent parameters are required for simulations of the close reactor vicinity, while far-field models can be sufficiently determined by temperature-independent parameters. Considering our findings in the large-scale assessment of potential environmental impacts of UCG, representative coupled simulations based on complex thermo-hydro-mechanical and regional-scale models become computationally feasible.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Martens, S.; Liebscher, A.; Möller, F.; Henninges, J.; Kempka, T.; Lüth, S.; Norden, B.; Prevedel, B.; Szizybalski, A.; Zimmer, M.; Kühn, M.; Ketzin Group;AbstractAt Ketzin, located west of Berlin, the GFZ German Research Centre for Geosciences operates Europe's longest- running on-shore CO2 storage site. The Ketzin pilot site has been developed since 2004 and comprises three wells to depths of 750 m to 800 m and one shallow observation well, an injection facility and permanently installed monitoring devices. Since June 2008, CO2 is injected into 630 m to 650 m deep sandstone units (Upper Triassic Stuttgart Formation) in an anticlinal structure of the Northeast German Basin. Until mid of May 2012, about 61,400 t of CO2 have been stored safely. One of the most comprehensive monitoring concepts worldwide is applied and capable of detecting the behaviour of the CO2 in the subsurface. The Ketzin project demonstrates safe CO2 storage in a saline aquifer on a research scale and effective monitoring. This paper summarizes the key results obtained after four years of CO2 injection.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Roehmann, L.; Tillner, E.; Magri, F.; Kühn, M.; Kempka, T.;AbstractThe present study assesses potential geomechanical impacts of pore pressure increase induced by CO2 injection at a prospective CO2 storage site located in the Middle Bunter sequence in Eastern Germany. A 3D supraregional-scale structural geological model was implemented in one-way coupled hydro-mechanical simulations to assess caprock and fault integrity. Simulation results show a maximum ground uplift of 0.021 m at the end of CO2 injection, while shear failure observed at the simulated time steps does not achieve a significant density in the entire model. Consequently, reservoir, caprock and fault integrity are not compromised at any time of CO2 injection operation.
Refubium arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Refubium arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 GermanyPublisher:MDPI AG Maria Wetzel; Christopher Otto; Min Chen; Shakil Masum; Hywel Thomas; Tomasz Urych; Bartłomiej Bezak; Thomas Kempka;doi: 10.3390/en16073279
Deep un-mineable coal deposits are viable reservoirs for permanent and safe storage of carbon dioxide (CO2) due to their ability to adsorb large amounts of CO2 in the microporous coal structure. A reduced amount of CO2 released into the atmosphere contributes in turn to the mitigation of climate change. However, there are a number of geomechanical risks associated with the commercial-scale storage of CO2, such as potential fault or fracture reactivation, microseismic events, cap rock integrity or ground surface uplift. The present study assesses potential site-specific hydromechanical impacts for a coal deposit of the Upper Silesian Coal Basin by means of numerical simulations. For that purpose, a near-field model is developed to simulate the injection and migration of CO2, as well as the coal-CO2 interactions in the vicinity of horizontal wells along with the corresponding changes in permeability and stresses. The resulting effective stress changes are then integrated as boundary condition into a far-field numerical model to study the geomechanical response at site-scale. An extensive scenario analysis is carried out, consisting of 52 simulation runs, whereby the impacts of injection pressures, well arrangement within two target coal seams as well as the effect of different geological uncertainties (e.g., regional stress regime and rock properties) is examined for operational and post-operational scenarios. The injection-induced vertical displacements amount in maximum to 3.59 cm and 1.07 cm directly above the coal seam and at the ground surface, respectively. The results further demonstrate that neither fault slip nor dilation, as a potential consequence of slip, are to be expected during the investigated scenarios. Nevertheless, even if fault integrity is not compromised, dilation tendencies indicate that faults may be hydraulically conductive and could represent local pathways for upward fluid migration. Therefore, the site-specific stress regime has to be determined as accurately as possible by in-situ stress measurements, and also fault properties need to be accounted for an extensive risk assessment. The present study obtained a quantitative understanding of the geomechanical processes taking place at the operational and post-operational states, supporting the assessment and mitigation of environmental risks associated with CO2 storage in coal seams.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3279/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/7/3279/pdfData sources: SygmaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3279/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/7/3279/pdfData sources: SygmaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Authors: Kempka, T.; Norden, B.;Abstract Pilot-scale CO 2 storage has been performed at the Ketzin pilot site in Germany from 2007 to 2013 with about 67 kt of CO 2 injected into the Upper Triassic Stuttgart Formation, focussing on efficient monitoring and long-term prediction strategies. We employed inverse modelling to revise the latest static geological reservoir model, considering bottomhole well pressures observed during hydraulic testing. Simulation results exhibit very good agreement with the observations, providing one reasonable permeability realization for the Ketzin pilot site near-well area. Furthermore, an existing hypothesis on the presence of a low-thickness sandstone channel between two wells is supported by our findings.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Elsevier BV Authors: Afanasyev, A.; Kempka, T.; Kühn, M.; Melnik, O.;AbstractWe give an overview of the MUFITS reservoir simulator capabilities for modelling subsurface carbon dioxide storage using the EOS-modules GASSTORE and BLACKOIL. The GASSTORE module covers solid-liquid-gas flows of water, carbon dioxide and salt components, and includes an option for automatic generation of the BLACKOIL PVT tables. We test the simulator against several benchmarking studies and then consider an application case of CO2 storage at the Ketzin pilot site, Germany. The modelling results are in excellent agreement with those produced with common scientific and standard industrial simulators.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.10.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.10.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 GermanyPublisher:MDPI AG Authors: Christopher Otto; Thomas Kempka;doi: 10.3390/en10060739
Underground coal gasification (UCG) converts coal to a high-calorific synthesis gas for the production of fuels or chemical feedstock. UCG reactors are generally operated below hydrostatic pressure to avoid leakage of UCG fluids into overburden aquifers. Additionally, fluid flow out of and into the reactor is also determined by the presence of the steam jacket, emerging in close reactor vicinity due to the high temperatures generated in UCG operation. Aiming at improving the understanding of the substantial role of the steam jacket in UCG operations, we employ numerical non-isothermal multiphase flow simulations to assess the occurring multiphase fluid flow processes. For that purpose, we first validate our modeling approach against published data on the U.S. UCG field trials at Hanna and Hoe Creek, achieving a very good agreement between our simulation and the observed water balances. Then, we discuss the effect of coal seam permeability and UCG reactor pressure on the dynamic multiphase flow processes in the reactor’s vicinity. The presented modeling approach allows for the quantification and prediction of time-dependent temperature and pressure distributions in the reactor vicinity, and thus steam jacket dynamics as well as reactor water in- and outflows.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/6/739/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10060739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/6/739/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10060739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Germany, AustraliaPublisher:Elsevier BV Fei Huang; Christopher Juhlin; Thomas Kempka; Ben Norden; Fengjiao Zhang;handle: 20.500.11937/40443
Abstract In order to simulate the 3D time-lapse seismic response from real data in a consistent manner detailed 3D property models at the Ketzin pilot site were constructed by robustly integrating borehole and 3D reflection seismic data. The spatial CO 2 distribution and the detailed CO 2 density in the reservoir were derived from dynamic flow simulations that had been history-matched to the site monitoring data. Changes in velocity and density after CO 2 injection were estimated utilizing the CO 2 saturation distributions at two repeat times and fluid substitution models. 4D seismic data were generated by convolving the property models at different times with an extracted wavelet. Time-lapse analysis was performed to qualitatively and quantitatively investigate the changes in reflection amplitude after CO 2 injection. Comparison between the synthetic and real data at the corresponding time indicates that the 3D property models were built successfully and model the 3D time-lapse seismic response induced by CO 2 injection. A synthetic experiment with two different source wavelets was implemented to investigate the impact of source non-repeatability on the seismic amplitude anomaly. Analysis shows that the same or similar sources should be used in time-lapse seismic monitoring to minimize the impact of source non-repeatability on the monitoring.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesInternational Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesInternational Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2013 GermanyPublisher:Elsevier BV Authors: Streibel, M.; Nakaten, N.; Kempka, T.; Kühn, M.;AbstractExcess electricity from wind and sun can be transformed into hydrogen and with carbon dioxide subsequently into methane. When needed, electricity is regained in a combined cycle plant burning the methane. To close the carbon cycle carbon dioxide is captured on site. Two subsurface storage formations for both gases are required for the technology. Our regional showcase of two German cities, Potsdam and Brandenburg/Havel, demonstrates that about 30% of their electricity demand can be provided in that way, using 17.2% of renewable electricity generated in the State of Brandenburg. The overall efficiency of the system is 27.7%.
Energy Procedia arrow_drop_down GFZ German Research Centre for GeosciencesConference object . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesConference object . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down GFZ German Research Centre for GeosciencesConference object . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesConference object . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2013Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Authors: Wetzel, M.; Kempka, T.; Kühn, M.;Abstract Predicting variations in macroscopic mechanical rock behaviour due to microstructural changes, driven by mineral precipitation and dissolution is necessary to couple chemo-mechanical processes in geological subsurface simulations. We apply 3D numerical homogenization models to estimate Young’s moduli for five synthetic microstructures, and successfully validate our results for comparable geometries with the analytical Mori-Tanaka approach. Further, we demonstrate that considering specific rock microstructures is of paramount importance, since calculated elastic properties may deviate by up to 230 % for the same mineral composition. Moreover, agreement between simulated and experimentally determined Young’s moduli is significantly improved, when detailed spatial information are employed.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Funded by:EC | TOPSEC| TOPSAuthors: Otto, C.; Kempka, T.;AbstractCoupled thermo-mechanical simulations were carried out to quantify permeability changes in representative coal measure strata surrounding an underground coal gasification (UCG) reactor. Comparing temperature-dependent and -independent rock properties applied in our simulations, notable differences in rock failure behavior, but only insignificant differences in spatial permeability development are observed. Hence, temperature-dependent parameters are required for simulations of the close reactor vicinity, while far-field models can be sufficiently determined by temperature-independent parameters. Considering our findings in the large-scale assessment of potential environmental impacts of UCG, representative coupled simulations based on complex thermo-hydro-mechanical and regional-scale models become computationally feasible.
GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu