- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Matthew J. Germino; Ann M. Moser; Alan R. Sands;doi: 10.1002/eap.1842
pmid: 30585672
AbstractPopulation‐level adaptation to spatial variation in factors such as climate and soils is critical for climate‐vulnerability assessments, restoration seeding, and other ecological applications in species management, and the underlying information is typically based on common‐garden studies that are short duration. Here, we show >20 yr were required for adaptive differences to emerge among 13 populations of a widespread shrub (sagebrush, Artemisia tridentata ssp wyomingensis) collected from around the western United States and planted into common gardens. Additionally, >10 yr were required for greater survival of local populations, that is, local adaptation, to become evident. Variation in survival was best explained by the combination of populations’ home ecoregion combined with grouping of minimum temperature and aridity. Additional reductions in survival were explained by ungrouped (i.e., continuous) measures of garden‐to‐population‐origin separation in geographic distance (5% decrease in survival per 100 km increase in separation; R2 = 0.22) and especially in minimum temperature in younger plants (−4% per + °C difference, R2 = 0.56 vs. 0.29 in the 14th vs. 27th post‐planting years, respectively). Longer‐term common garden studies are needed. While we await them, uncertainty in adaptive variation resulting from short‐term observations could be quantitatively estimated and reported with seed‐transfer guidelines to reduce risks of introducing maladapted provenances in restoration.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Robert K. Shriver; Caitlin M. Andrews; David S. Pilliod; Robert S. Arkle; Justin L. Welty; Matthew J. Germino; Michael C. Duniway; David A. Pyke; John B. Bradford;doi: 10.1111/gcb.14374
pmid: 29964360
AbstractRestoration and rehabilitation of native vegetation in dryland ecosystems, which encompass over 40% of terrestrial ecosystems, is a common challenge that continues to grow as wildfire and biological invasions transform dryland plant communities. The difficulty in part stems from low and variable precipitation, combined with limited understanding about how weather conditions influence restoration outcomes, and increasing recognition that one‐time seeding approaches can fail if they do not occur during appropriate plant establishment conditions. The sagebrush biome, which once covered over 620,000 km2 of western North America, is a prime example of a pressing dryland restoration challenge for which restoration success has been variable. We analyzed field data on Artemisia tridentata (big sagebrush) restoration collected at 771 plots in 177 wildfire sites across its western range, and used process‐based ecohydrological modeling to identify factors leading to its establishment. Our results indicate big sagebrush occurrence is most strongly associated with relatively cool temperatures and wet soils in the first spring after seeding. In particular, the amount of winter snowpack, but not total precipitation, helped explain the availability of spring soil moisture and restoration success. We also find considerable interannual variability in the probability of sagebrush establishment. Adaptive management strategies that target seeding during cool, wet years or mitigate effects of variability through repeated seeding may improve the likelihood of successful restoration in dryland ecosystems. Given consistent projections of increasing temperatures, declining snowpack, and increasing weather variability throughout midlatitude drylands, weather‐centric adaptive management approaches to restoration will be increasingly important for dryland restoration success.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative research: ...NSF| Collaborative research: RoL: Using reaction norms to link genomic and phenotypic variation with regional-scale population responses to environmental changeToby M. Maxwell; Matthew J. Germino; Seth Romero; Lauren M. Porensky; Dana M. Blumenthal; Cynthia S. Brown; Peter B. Adler;Purpose The sensitivity of wildland plants to temperature can be directly measured using experimental manipulations of temperature in situ. We show that soil surface temperature and plant density (per square meter) have a significant impact on the germination, growth, and phenology of Bromus tectorum L., cheatgrass, a short-statured invasive winter-annual grass, and assess a new experimental temperature manipulation method: the application of black and white gravel to warm and cool the soil surface. Methods We monitored height, seed production, and phenological responses of cheatgrass, seeded into colored gravel at low and high densities at two sites in the western USA: Boise, ID and Cheyenne, WY. Soil surface temperature and volumetric water content were measured to assess treatment effects on soil surface microclimate. Results Black gravel increased mean temperatures of the surface soil by 1.6 and 2.6 °C compared to white gravel in Cheyenne and Boise, respectively, causing 21–24 more days with soil temperatures > 0 °C, earlier cheatgrass germination, and up to 2.8-fold increases in cheatgrass height. Higher seeding density of cheatgrass led to 1.4-fold taller plants on black gravel plots at both sites, but not white gravel at the Boise site, indicating a possible thermal benefit or reduction of water demand due to plant clustering in warmer treatments. Conclusions Manipulating soil-surface albedo altered the soil microclimate and thus growth and phenology of cheatgrass, whose life history and growth form confer a strong dependency on soil-surface conditions.
Plant and Soil arrow_drop_down ScholarWorks Boise State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11104-023-05929-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Plant and Soil arrow_drop_down ScholarWorks Boise State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11104-023-05929-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Audrey L. McCombs; Diane Debinski; Keith Reinhardt; Matthew J. Germino; Petrutza Caragea;AbstractNectar production may be a point of sensitivity that can help link primary and secondary trophic responses to climate shifts, and is therefore important to our understanding of ecosystem responses. We evaluated the nectar response of two widespread native forbs, Balsamorhiza sagittata and Eriogonum umbellatum, to experimental warming in a high‐elevation sagebrush meadow in the Teton Range, WY, USA, over two years, 2015 and 2016. Warming treatments reduced the occurrence of nighttime freezing and nectar volume but increased sugar concentration in nectar in both species in both years. Warming effects were also evident in a consistent increase in the number of flowers produced by B. sagittata. Our research suggests that warming associated with climate change has the potential to induce shifts in the nectar‐feeding community by changing nectar characteristics such as volume and sugar concentration to which nectar feeders are adapted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Environmental System Science Data Infrastructure for a Virtual Ecosystem; Subalpine and Alpine Species Range Shifts with Climate Change: Temperature and Soil Moisture Manipulations to Test Species and Population Responses (Alpine Treeline Warming Experiment) Authors: Jabis, Meredith D.; Germino, Matthew J.; Kueppers, Lara M.;doi: 10.15485/1771221
This archive contains data used to support conclusions made in “Colonisation of the alpine tundra by trees: alpine neighbours assist late-seral but not early-seral conifer seedlings”, by Jabis et al., 2020. Data were collected in the alpine field location of the Alpine Treeline Warming Experiment (ATWE), on Niwot Ridge, in the Front Range of the Colorado Rocky Mountains, USA.This package includes survivorship and physiology data for limber pine (Pinus flexilis), Engelmann spruce (Picea engelmannii), and Rocky Mountain snowlover (Chionophila jamesii). Site climate data such as soil moisture and temperature are also included. This data package contains ten comma-separated-values (.csv) files, and two rich-text-format (.rtf) files all compressed within one folder named “Neighbor_data_repository.zip”. Both file types can be opened by text-edit softwares such as TextEdit (Mac) and Notepad (Windows). The files are also compatible with analyses softwares such as R. .csv files can also be opened by Microsoft Excel. Two geospatial datasets are also included in this archive: one keyhole markup language (.kml) file with four points marking the corners of the study site, and a compressed file containing two ESRI shapefiles (.shp). The .kml files can be opened with Google Earth or Google Maps, and the shapefiles can be opened using any geographic information system applications, including the entire ArcGIS suite, and QGIS. -------------------------------------------------------------------------------------------------------------------------------------------------------The elevation mountain treeline is expected to shift upward with climate warming, and seed germination and seedling survival are critical local controls on treeline expansion. Neighboring alpine plants, either through competition for resources or through altering the microclimate, can also affect seedling emergence and survival. We asked whether establishing tree seedlings and an alpine herb are similarly sensitive to alpine plant neighbours under ambient and altered climate. We imposed active heating, watering, and neighbor removal experiments for emerging conifer seedlings and an alpine herb.We compared target plant survival, photosynthetic efficiency, and water use efficiency under ambient and experimental conditions. Picea engelmannii seedlings showed lower survival compared with Pinus flexilis three weeks following neighbour removal, and after 1 year only survived in watered plots. Pinus seedlings responded to neighbour removal by lowering the quantum yield of photosynthesis (ϕPSII). Contrary to expectations from the stress gradient hypothesis, survival was reduced without neighbours near the low-elevation range limit of Chionophila jamesii.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/1771221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/1771221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025 United StatesPublisher:U.S. Geological Survey Corey R Lawrence; Sheel Bansal; Judith Drexler; Emily N Fromenthal; Matthew Germino; Miriam C Jones; Jinxun Liu; Kevin A Ryan; Camille L Stagg; Sasha C Reed; Mark P Waldrop; Peter D Warwick; Kimberly P Wickland; Victoria L Woltz; Zhiliang Zhu;doi: 10.5066/p13ho3nw
This data release contains a bibliography of U.S. Geological Survey publications on carbon and greenhouse gas research. Publications between 2014 and 2024 were identified using search terms such as: carbon, greenhouse gas, methane, nitrous oxide, emission, sequestration, and primary productivity. Publications were primarily sourced from the USGS Publications Warehouse (https://pubs.usgs.gov/) and the USGS carbon research community. Publications were classified into four topical main categories (applications, ecosystems, processes, and methods) as well as category-specific subcategories (see Entity and Attributes for details).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p13ho3nw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p13ho3nw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 27 Jan 2018Publisher:Dryad Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; Veblen, Thomas T.; Smith, Jeremy M.; Kueppers, Lara M.;1. Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long lifespans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively. 2. Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers. 3. Empirically observed, warming-driven declines in recruitment led to rapid modeled population declines at the low-elevation, “warm edge” of subalpine forest and slow emergence of populations beyond the high-elevation, “cool edge”. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modeled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above treeline, and, ultimately, expansion into the alpine. 4. Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts. Models and results for "Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming"The models and results shown in the manuscript figures 3 and 4 are archived as text files for use with RAMAS GIS (Version 5).Conlisk_etal_JEcol2017_model_archive06282017.zip
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q1f65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q1f65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:Oxford University Press (OUP) Funded by:NSF | RII Track-2 FEC: Genomics..., NSF | RII Track-1: Linking Geno...NSF| RII Track-2 FEC: Genomics Underlying Toxin Tolerance (GUTT): Identifying Molecular Innovations that Predict Phenotypes of Toxin Tolerance in Wild Vertebrate Herbivores ,NSF| RII Track-1: Linking Genome to Phenome to Predict Adaptive Responses of Organisms to Changing LandscapesAnthony E Melton; Andrew W Child; Richard S Beard; Carlos Dave C Dumaguit; Jennifer S Forbey; Matthew Germino; Marie-Anne de Graaff; Andrew Kliskey; Ilia J Leitch; Peggy Martinez; Stephen J Novak; Jaume Pellicer; Bryce A Richardson; Desiree Self; Marcelo Serpe; Sven Buerki;Abstract Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research.
G3: Genes, Genomes, ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/g3journal/jkac122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 60visibility views 60 download downloads 64 Powered bymore_vert G3: Genes, Genomes, ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/g3journal/jkac122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Michael J. Osland; John B. Bradford; Lauren T. Toth; Matthew J. Germino; James B. Grace; Judith Z. Drexler; Camille L. Stagg; Eric R. Grossman; Karen M. Thorne; Stephanie S. Romañach; Davina L. Passeri; Gregory B. Noe; Jessica R. Lacy; Ken W. Krauss; Kurt P. Kowalski; Glenn R. Guntenspergen; Neil K. Ganju; Nicholas M. Enwright; Joel A. Carr; Kristin B. Byrd; Kevin J. Buffington;doi: 10.1002/ecs2.70229
AbstractAn ecological threshold is the point at which a comparatively small environmental change triggers an abrupt and disproportionately large ecological response. In the face of accelerating climate change, there is concern that abrupt ecosystem transformations will become more widespread as critical ecological thresholds are crossed. There has been ongoing debate, however, regarding the prevalence of ecological thresholds across the natural world. While ecological thresholds are ubiquitous in some ecosystems, thresholds have been difficult to detect in others. Some studies have even concluded that threshold responses are uncommon in the natural world and overly emphasized in the ecological literature. As ecologists who work in ecosystems chronically exposed to high abiotic stress, we consider ecological thresholds and ecosystem transformations to be critical concepts that can greatly advance understanding of ecological responses to climate change and inform ecosystem management. But quantifying ecological thresholds can be challenging, if not impossible, without data that are strategically collected for that purpose. Here, we present a conceptual framework built upon linkages between abiotic stress, climate‐driven ecological threshold responses, and the risk of ecosystem transformation. We also present a simple approach for quantifying ecological thresholds across abiotic stress gradients. We hypothesize that climate‐driven threshold responses are especially influential in ecosystems chronically exposed to high abiotic stress, where autotroph diversity is low and foundation species play a prominent ecological role. Abiotic conditions in these environments are often near physiological tolerance limits of foundation species, which means that small abiotic changes can trigger landscape‐level ecological transformations. Conversely, the alleviation of stress near thresholds can allow foundation species to thrive and spread into previously inhospitable locations. We provide examples of this climate‐driven threshold behavior from four high‐stress environments: coastal wetlands, coral reefs, drylands, and alpine ecosystems. Our overarching aim in this review is to clarify the strong relationships between abiotic stress, climate‐driven ecological thresholds, and the risk of ecosystem transformation under climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.70229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.70229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Environmental System Science Data Infrastructure for a Virtual Ecosystem; Subalpine and Alpine Species Range Shifts with Climate Change: Temperature and Soil Moisture Manipulations to Test Species and Population Responses (Alpine Treeline Warming Experiment) Winkler, Daniel E.; Butz, Ramona J.; Germino, Matthew J.; Reinhardt, Keith; Kueppers, Lara M.;doi: 10.15485/1756714
This archive contains data that were used to support conclusions drawn in “Snowmelt Timing Regulates Community Composition, Phenology, and Physiological Performance of Alpine Plants”, by Winkler et al., 2018. Data were collected throughout the 2009 growing season on Niwot Ridge, Colorado, before the site became part of the Alpine Treeline Warming Experiment (ATWE). Geospatial files are included in this archive to provide additional locational context. The files in this data package consist of five comma-separated-values (.csv) files, one keyhole markup language (.kml) file, and two ESRI shapefiles (.shp). The .csv files can be opened by Microsoft Excel, R, or any simple text-editor software, such as TextEdit (MacOS) or Notepad (Windows). The .kml files can be opened by Google Maps or Google Earth, and the .shp files are compatible with GIS softwares such as ESRI’s ArcGIS suite, and QGIS.------------------------------------------------------------------------------------------------------------------------------------------------------------------------------We asked how plant community composition, phenology, plant water relations, and photosynthetic gas exchange of alpine-restricted and wide-ranging species differ in their responses to a ca. 40-day snowmelt gradient in the Colorado Rocky mountains (Lewisia pygmaea, Sibbaldia procumbens, and Hymenoxys grandiflora were alpine-restricted and Artemisia scopulorum, Carex rupestris, and Geum rossii were wide-ranging species). To do this, we measured percent cover and flowering initiation across 20 plots varying in snowmelt timing and measured net photosynthesis and stomatal conductance in multiple individuals of each target species in these plots in 2009.As hypothesized, species richness and foliar cover increased with earlier snowmelt, due to a greater abundance of wide-ranging species present in earlier melting plots. Flowering initiation occurred earlier with earlier snowmelt for 12 out of 19 species analyzed, while flowering duration was shortened with later snowmelt for six species (all but one were wide ranging species). We observed >50% declines in net photosynthesis from July to September as soil moisture and plant water potentials declined. Early-season stomatal conductance was higher in wide-ranging species, indicating a more competitive strategy for water acquisition when soil moisture is high. Even so, there were no associated differences in photosynthesis or transpiration, suggesting no strong differences between these groups in physiology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/1756714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/1756714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Matthew J. Germino; Ann M. Moser; Alan R. Sands;doi: 10.1002/eap.1842
pmid: 30585672
AbstractPopulation‐level adaptation to spatial variation in factors such as climate and soils is critical for climate‐vulnerability assessments, restoration seeding, and other ecological applications in species management, and the underlying information is typically based on common‐garden studies that are short duration. Here, we show >20 yr were required for adaptive differences to emerge among 13 populations of a widespread shrub (sagebrush, Artemisia tridentata ssp wyomingensis) collected from around the western United States and planted into common gardens. Additionally, >10 yr were required for greater survival of local populations, that is, local adaptation, to become evident. Variation in survival was best explained by the combination of populations’ home ecoregion combined with grouping of minimum temperature and aridity. Additional reductions in survival were explained by ungrouped (i.e., continuous) measures of garden‐to‐population‐origin separation in geographic distance (5% decrease in survival per 100 km increase in separation; R2 = 0.22) and especially in minimum temperature in younger plants (−4% per + °C difference, R2 = 0.56 vs. 0.29 in the 14th vs. 27th post‐planting years, respectively). Longer‐term common garden studies are needed. While we await them, uncertainty in adaptive variation resulting from short‐term observations could be quantitatively estimated and reported with seed‐transfer guidelines to reduce risks of introducing maladapted provenances in restoration.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Robert K. Shriver; Caitlin M. Andrews; David S. Pilliod; Robert S. Arkle; Justin L. Welty; Matthew J. Germino; Michael C. Duniway; David A. Pyke; John B. Bradford;doi: 10.1111/gcb.14374
pmid: 29964360
AbstractRestoration and rehabilitation of native vegetation in dryland ecosystems, which encompass over 40% of terrestrial ecosystems, is a common challenge that continues to grow as wildfire and biological invasions transform dryland plant communities. The difficulty in part stems from low and variable precipitation, combined with limited understanding about how weather conditions influence restoration outcomes, and increasing recognition that one‐time seeding approaches can fail if they do not occur during appropriate plant establishment conditions. The sagebrush biome, which once covered over 620,000 km2 of western North America, is a prime example of a pressing dryland restoration challenge for which restoration success has been variable. We analyzed field data on Artemisia tridentata (big sagebrush) restoration collected at 771 plots in 177 wildfire sites across its western range, and used process‐based ecohydrological modeling to identify factors leading to its establishment. Our results indicate big sagebrush occurrence is most strongly associated with relatively cool temperatures and wet soils in the first spring after seeding. In particular, the amount of winter snowpack, but not total precipitation, helped explain the availability of spring soil moisture and restoration success. We also find considerable interannual variability in the probability of sagebrush establishment. Adaptive management strategies that target seeding during cool, wet years or mitigate effects of variability through repeated seeding may improve the likelihood of successful restoration in dryland ecosystems. Given consistent projections of increasing temperatures, declining snowpack, and increasing weather variability throughout midlatitude drylands, weather‐centric adaptive management approaches to restoration will be increasingly important for dryland restoration success.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative research: ...NSF| Collaborative research: RoL: Using reaction norms to link genomic and phenotypic variation with regional-scale population responses to environmental changeToby M. Maxwell; Matthew J. Germino; Seth Romero; Lauren M. Porensky; Dana M. Blumenthal; Cynthia S. Brown; Peter B. Adler;Purpose The sensitivity of wildland plants to temperature can be directly measured using experimental manipulations of temperature in situ. We show that soil surface temperature and plant density (per square meter) have a significant impact on the germination, growth, and phenology of Bromus tectorum L., cheatgrass, a short-statured invasive winter-annual grass, and assess a new experimental temperature manipulation method: the application of black and white gravel to warm and cool the soil surface. Methods We monitored height, seed production, and phenological responses of cheatgrass, seeded into colored gravel at low and high densities at two sites in the western USA: Boise, ID and Cheyenne, WY. Soil surface temperature and volumetric water content were measured to assess treatment effects on soil surface microclimate. Results Black gravel increased mean temperatures of the surface soil by 1.6 and 2.6 °C compared to white gravel in Cheyenne and Boise, respectively, causing 21–24 more days with soil temperatures > 0 °C, earlier cheatgrass germination, and up to 2.8-fold increases in cheatgrass height. Higher seeding density of cheatgrass led to 1.4-fold taller plants on black gravel plots at both sites, but not white gravel at the Boise site, indicating a possible thermal benefit or reduction of water demand due to plant clustering in warmer treatments. Conclusions Manipulating soil-surface albedo altered the soil microclimate and thus growth and phenology of cheatgrass, whose life history and growth form confer a strong dependency on soil-surface conditions.
Plant and Soil arrow_drop_down ScholarWorks Boise State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11104-023-05929-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Plant and Soil arrow_drop_down ScholarWorks Boise State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11104-023-05929-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Audrey L. McCombs; Diane Debinski; Keith Reinhardt; Matthew J. Germino; Petrutza Caragea;AbstractNectar production may be a point of sensitivity that can help link primary and secondary trophic responses to climate shifts, and is therefore important to our understanding of ecosystem responses. We evaluated the nectar response of two widespread native forbs, Balsamorhiza sagittata and Eriogonum umbellatum, to experimental warming in a high‐elevation sagebrush meadow in the Teton Range, WY, USA, over two years, 2015 and 2016. Warming treatments reduced the occurrence of nighttime freezing and nectar volume but increased sugar concentration in nectar in both species in both years. Warming effects were also evident in a consistent increase in the number of flowers produced by B. sagittata. Our research suggests that warming associated with climate change has the potential to induce shifts in the nectar‐feeding community by changing nectar characteristics such as volume and sugar concentration to which nectar feeders are adapted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Environmental System Science Data Infrastructure for a Virtual Ecosystem; Subalpine and Alpine Species Range Shifts with Climate Change: Temperature and Soil Moisture Manipulations to Test Species and Population Responses (Alpine Treeline Warming Experiment) Authors: Jabis, Meredith D.; Germino, Matthew J.; Kueppers, Lara M.;doi: 10.15485/1771221
This archive contains data used to support conclusions made in “Colonisation of the alpine tundra by trees: alpine neighbours assist late-seral but not early-seral conifer seedlings”, by Jabis et al., 2020. Data were collected in the alpine field location of the Alpine Treeline Warming Experiment (ATWE), on Niwot Ridge, in the Front Range of the Colorado Rocky Mountains, USA.This package includes survivorship and physiology data for limber pine (Pinus flexilis), Engelmann spruce (Picea engelmannii), and Rocky Mountain snowlover (Chionophila jamesii). Site climate data such as soil moisture and temperature are also included. This data package contains ten comma-separated-values (.csv) files, and two rich-text-format (.rtf) files all compressed within one folder named “Neighbor_data_repository.zip”. Both file types can be opened by text-edit softwares such as TextEdit (Mac) and Notepad (Windows). The files are also compatible with analyses softwares such as R. .csv files can also be opened by Microsoft Excel. Two geospatial datasets are also included in this archive: one keyhole markup language (.kml) file with four points marking the corners of the study site, and a compressed file containing two ESRI shapefiles (.shp). The .kml files can be opened with Google Earth or Google Maps, and the shapefiles can be opened using any geographic information system applications, including the entire ArcGIS suite, and QGIS. -------------------------------------------------------------------------------------------------------------------------------------------------------The elevation mountain treeline is expected to shift upward with climate warming, and seed germination and seedling survival are critical local controls on treeline expansion. Neighboring alpine plants, either through competition for resources or through altering the microclimate, can also affect seedling emergence and survival. We asked whether establishing tree seedlings and an alpine herb are similarly sensitive to alpine plant neighbours under ambient and altered climate. We imposed active heating, watering, and neighbor removal experiments for emerging conifer seedlings and an alpine herb.We compared target plant survival, photosynthetic efficiency, and water use efficiency under ambient and experimental conditions. Picea engelmannii seedlings showed lower survival compared with Pinus flexilis three weeks following neighbour removal, and after 1 year only survived in watered plots. Pinus seedlings responded to neighbour removal by lowering the quantum yield of photosynthesis (ϕPSII). Contrary to expectations from the stress gradient hypothesis, survival was reduced without neighbours near the low-elevation range limit of Chionophila jamesii.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/1771221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/1771221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025 United StatesPublisher:U.S. Geological Survey Corey R Lawrence; Sheel Bansal; Judith Drexler; Emily N Fromenthal; Matthew Germino; Miriam C Jones; Jinxun Liu; Kevin A Ryan; Camille L Stagg; Sasha C Reed; Mark P Waldrop; Peter D Warwick; Kimberly P Wickland; Victoria L Woltz; Zhiliang Zhu;doi: 10.5066/p13ho3nw
This data release contains a bibliography of U.S. Geological Survey publications on carbon and greenhouse gas research. Publications between 2014 and 2024 were identified using search terms such as: carbon, greenhouse gas, methane, nitrous oxide, emission, sequestration, and primary productivity. Publications were primarily sourced from the USGS Publications Warehouse (https://pubs.usgs.gov/) and the USGS carbon research community. Publications were classified into four topical main categories (applications, ecosystems, processes, and methods) as well as category-specific subcategories (see Entity and Attributes for details).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p13ho3nw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p13ho3nw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 27 Jan 2018Publisher:Dryad Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; Veblen, Thomas T.; Smith, Jeremy M.; Kueppers, Lara M.;1. Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long lifespans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively. 2. Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers. 3. Empirically observed, warming-driven declines in recruitment led to rapid modeled population declines at the low-elevation, “warm edge” of subalpine forest and slow emergence of populations beyond the high-elevation, “cool edge”. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modeled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above treeline, and, ultimately, expansion into the alpine. 4. Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts. Models and results for "Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming"The models and results shown in the manuscript figures 3 and 4 are archived as text files for use with RAMAS GIS (Version 5).Conlisk_etal_JEcol2017_model_archive06282017.zip
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q1f65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q1f65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:Oxford University Press (OUP) Funded by:NSF | RII Track-2 FEC: Genomics..., NSF | RII Track-1: Linking Geno...NSF| RII Track-2 FEC: Genomics Underlying Toxin Tolerance (GUTT): Identifying Molecular Innovations that Predict Phenotypes of Toxin Tolerance in Wild Vertebrate Herbivores ,NSF| RII Track-1: Linking Genome to Phenome to Predict Adaptive Responses of Organisms to Changing LandscapesAnthony E Melton; Andrew W Child; Richard S Beard; Carlos Dave C Dumaguit; Jennifer S Forbey; Matthew Germino; Marie-Anne de Graaff; Andrew Kliskey; Ilia J Leitch; Peggy Martinez; Stephen J Novak; Jaume Pellicer; Bryce A Richardson; Desiree Self; Marcelo Serpe; Sven Buerki;Abstract Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research.
G3: Genes, Genomes, ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/g3journal/jkac122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 60visibility views 60 download downloads 64 Powered bymore_vert G3: Genes, Genomes, ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/g3journal/jkac122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Michael J. Osland; John B. Bradford; Lauren T. Toth; Matthew J. Germino; James B. Grace; Judith Z. Drexler; Camille L. Stagg; Eric R. Grossman; Karen M. Thorne; Stephanie S. Romañach; Davina L. Passeri; Gregory B. Noe; Jessica R. Lacy; Ken W. Krauss; Kurt P. Kowalski; Glenn R. Guntenspergen; Neil K. Ganju; Nicholas M. Enwright; Joel A. Carr; Kristin B. Byrd; Kevin J. Buffington;doi: 10.1002/ecs2.70229
AbstractAn ecological threshold is the point at which a comparatively small environmental change triggers an abrupt and disproportionately large ecological response. In the face of accelerating climate change, there is concern that abrupt ecosystem transformations will become more widespread as critical ecological thresholds are crossed. There has been ongoing debate, however, regarding the prevalence of ecological thresholds across the natural world. While ecological thresholds are ubiquitous in some ecosystems, thresholds have been difficult to detect in others. Some studies have even concluded that threshold responses are uncommon in the natural world and overly emphasized in the ecological literature. As ecologists who work in ecosystems chronically exposed to high abiotic stress, we consider ecological thresholds and ecosystem transformations to be critical concepts that can greatly advance understanding of ecological responses to climate change and inform ecosystem management. But quantifying ecological thresholds can be challenging, if not impossible, without data that are strategically collected for that purpose. Here, we present a conceptual framework built upon linkages between abiotic stress, climate‐driven ecological threshold responses, and the risk of ecosystem transformation. We also present a simple approach for quantifying ecological thresholds across abiotic stress gradients. We hypothesize that climate‐driven threshold responses are especially influential in ecosystems chronically exposed to high abiotic stress, where autotroph diversity is low and foundation species play a prominent ecological role. Abiotic conditions in these environments are often near physiological tolerance limits of foundation species, which means that small abiotic changes can trigger landscape‐level ecological transformations. Conversely, the alleviation of stress near thresholds can allow foundation species to thrive and spread into previously inhospitable locations. We provide examples of this climate‐driven threshold behavior from four high‐stress environments: coastal wetlands, coral reefs, drylands, and alpine ecosystems. Our overarching aim in this review is to clarify the strong relationships between abiotic stress, climate‐driven ecological thresholds, and the risk of ecosystem transformation under climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.70229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.70229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Environmental System Science Data Infrastructure for a Virtual Ecosystem; Subalpine and Alpine Species Range Shifts with Climate Change: Temperature and Soil Moisture Manipulations to Test Species and Population Responses (Alpine Treeline Warming Experiment) Winkler, Daniel E.; Butz, Ramona J.; Germino, Matthew J.; Reinhardt, Keith; Kueppers, Lara M.;doi: 10.15485/1756714
This archive contains data that were used to support conclusions drawn in “Snowmelt Timing Regulates Community Composition, Phenology, and Physiological Performance of Alpine Plants”, by Winkler et al., 2018. Data were collected throughout the 2009 growing season on Niwot Ridge, Colorado, before the site became part of the Alpine Treeline Warming Experiment (ATWE). Geospatial files are included in this archive to provide additional locational context. The files in this data package consist of five comma-separated-values (.csv) files, one keyhole markup language (.kml) file, and two ESRI shapefiles (.shp). The .csv files can be opened by Microsoft Excel, R, or any simple text-editor software, such as TextEdit (MacOS) or Notepad (Windows). The .kml files can be opened by Google Maps or Google Earth, and the .shp files are compatible with GIS softwares such as ESRI’s ArcGIS suite, and QGIS.------------------------------------------------------------------------------------------------------------------------------------------------------------------------------We asked how plant community composition, phenology, plant water relations, and photosynthetic gas exchange of alpine-restricted and wide-ranging species differ in their responses to a ca. 40-day snowmelt gradient in the Colorado Rocky mountains (Lewisia pygmaea, Sibbaldia procumbens, and Hymenoxys grandiflora were alpine-restricted and Artemisia scopulorum, Carex rupestris, and Geum rossii were wide-ranging species). To do this, we measured percent cover and flowering initiation across 20 plots varying in snowmelt timing and measured net photosynthesis and stomatal conductance in multiple individuals of each target species in these plots in 2009.As hypothesized, species richness and foliar cover increased with earlier snowmelt, due to a greater abundance of wide-ranging species present in earlier melting plots. Flowering initiation occurred earlier with earlier snowmelt for 12 out of 19 species analyzed, while flowering duration was shortened with later snowmelt for six species (all but one were wide ranging species). We observed >50% declines in net photosynthesis from July to September as soil moisture and plant water potentials declined. Early-season stomatal conductance was higher in wide-ranging species, indicating a more competitive strategy for water acquisition when soil moisture is high. Even so, there were no associated differences in photosynthesis or transpiration, suggesting no strong differences between these groups in physiology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/1756714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/1756714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu