- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Report , External research report , Other literature type , Book 2004 France, France, NetherlandsPublisher:Alterra Schelhaas, M.J.; van Esch, P.W.; Groen, T.A.; de Jong, B.H.J.; Kanninen, M.; Liski, J.; Masera, O.; Mohren, G.M.J.; Nabuurs, G.J.; Palosuo, T.; Pedroni, L.; Vallejo, A.; Vilén, T.;handle: 10568/19184
This report describes the conceptual approach of the CO2FIX V 3.1 model, as well as its implementation and numerous examples. This stand level simulation model is a tool which quantifies the C stocks and fluxes in the forest biomass, the soil organic matter and the wood products chain. Included are also a bioenergy module, a financial module and a carbon accounting module. The model is applicable to many different situations: afforestation projects, agroforestry systems, and selective logging systems. The model is freely available from the web, together with numerous examples. The model has many users. The two earlier versions of the model have been downloaded already almost 2000 times
Research@WUR arrow_drop_down Wageningen Staff PublicationsExternal research report . 2004Data sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10568/19184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Wageningen Staff PublicationsExternal research report . 2004Data sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10568/19184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 NetherlandsPublisher:Elsevier BV Fangyuan Yu; Tiejun Wang; Thomas A. Groen; Andrew K. Skidmore; Xuefei Yang; Keping Ma; Zhifeng Wu;pmid: 31096381
Biodiversity loss and variation in species responses to climate and land use change have been found across broad taxonomic groups. However, whether species from the same taxonomic group with distinct geographical ranges will respond differently is poorly understood. The aim of this study is to predict the potential impacts of future climate and land use change on the distribution of narrow- and wide-ranging Rhododendron species, and estimate their relative contribution in China. We applied the presence-only ecological niche model MaxEnt to predict the distribution of 10 narrow-ranging and 10 wide-ranging Rhododendron species for the year 2070, using three general circulation models and three scenarios of climate and land use change. We measured the predicted distribution change of each species using change ratio, distance and direction of core range shifts, and niche overlap using Schoener's D. We found that the distribution areas of six narrow-ranging species would decrease, of which one species would go extinct. The remaining four narrow-ranging species would experience range expansion. Distribution of all the wide-ranging Rhododendron species would decrease. All Rhododendrons will shift to the northwest. We conclude that Rhododendron species generally will be negatively affected by the climatic and land use change expected in 2070 from the three scenarios evaluated in this study, but some narrow-ranging species may be positively influenced. Narrow-ranging Rhododendron species are more vulnerable compared to wide-ranging Rhododendron species. This study demonstrated that the effects of climate and land use change on alpine and subalpine plant species is species-specific, thereby strengthening our understanding of the impacts of climate and land use change on plant distribution.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Netherlands, FrancePublisher:Elsevier BV Akpoti, Komlavi; Groen, T.; Dossou-Yovo, E.; Kabo-bah, A. T.; Zwart, Sander J.;handle: 10568/119581
CONTEXT: Although rice production has increased significantly in the last decade in West Africa, the region is far from being rice self-sufficient. Inland valleys (IVs) with their relatively higher water content and soil fertility compared to the surrounding uplands are the main rice-growing agroecosystem. They are being promoted by governments and development agencies as future food baskets of the region. However, West Africa's crop production is estimated to be negatively affected by climate change due to the strong dependence of its agriculture on rainfall.OBJECTIVE: The main objective of the study is to apply a set of machine learning models to quantify the extent of climate change impact on land suitability for rice using the presence of rice-only data in IVs along with bioclimatic indicators.METHODS: We used a spatially explicit modeling approach based on correlative Ecological Niche Modeling. We deployed 4 algorithms (Boosted Regression Trees, Generalized Linear Model, Maximum Entropy, and Random Forest) for 4-time periods (the 2030s, 2050s, 2070s, and 2080s) of the 4 Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8) from an ensemble set of 32 spatially downscaled and bias-corrected Global Circulation Models climate data.RESULTS AND CONCLUSIONS: The overall trend showed a decrease in suitable areas compared to the baseline as a function of changes in temperature and precipitation by the order of 22–33% area loss under the lowest reduction scenarios and more than 50% in extreme cases. Isothermality or how large the day to night temperatures oscillate relative to the annual oscillations has a large impact on area losses while precipitation increase accounts for most of the areas with no change in suitability. Strong adaptation measures along with technological advancement and adoption will be needed to cope with the adverse effects of climate change on inland valley rice areas in the sub-region.SIGNIFICANCE: The demand for rice in West Africa is huge. For the rice self-sufficiency agenda of the region, “where” and “how much” land resources are available is key and requires long-term, informed planning. Farmers can only adapt when they switch to improved breeds, providing that they are suited for the new conditions. Our results stress the need for land use planning that considers potential climate change impacts to define the best areas and growing systems to produce rice under multiple future climate change uncertainties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2022.103429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2022.103429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 NetherlandsPublisher:Cambridge University Press (CUP) Groen, T.A.; van Langevelde, F.; van de Vijver, C.A.D.M.; Govender, N.; Prins, H.H.T.;Abstract:In this paper, we investigate which factors determine tree clustering in Southern African savannas. This was tested by measuring clustering of trees using the T-squared sampling method in plots of the Kruger National Park experimental burning programme in South Africa. Fire return interval is the main treatment in these plots, but also several auxiliary determining parameters like clay content in the soil, diameter of tree canopies, understorey composition, tree species diversity and average annual rainfall were measured while sampling. In the Kruger National Park 48 plots distributed over four different landscape types and with three different burning treatments (never, once every 3 y and annually) were sampled. First, we related the clustering of trees to these environmental variables. When looking at the most abundant species in each plot, the analysis revealed that clustering is mainly correlated with clay content in the soil. This analysis also showed that fire frequency had a positive effect on the clustering of tree species that are not very abundant. We suggest that less abundant species might be less resistant to fire and therefore adopt a mechanism of clustering to exclude grass fires under their canopy. Finally, we tested the effect of clustering on the impact of fire on trees by analysing the relationship between the distance of a tree to its nearest neighbour and its canopy diameter. We found that clustering reduces the damaging effect of fire on trees. Our study contributes to understanding of savanna functioning by showing which processes are relevant in the distribution of savanna trees.
Wageningen Staff Pub... arrow_drop_down Journal of Tropical EcologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Journal of Tropical EcologyArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0266467408004872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Journal of Tropical EcologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Journal of Tropical EcologyArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0266467408004872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Report , External research report , Other literature type , Book 2004 France, France, NetherlandsPublisher:Alterra Schelhaas, M.J.; van Esch, P.W.; Groen, T.A.; de Jong, B.H.J.; Kanninen, M.; Liski, J.; Masera, O.; Mohren, G.M.J.; Nabuurs, G.J.; Palosuo, T.; Pedroni, L.; Vallejo, A.; Vilén, T.;handle: 10568/19184
This report describes the conceptual approach of the CO2FIX V 3.1 model, as well as its implementation and numerous examples. This stand level simulation model is a tool which quantifies the C stocks and fluxes in the forest biomass, the soil organic matter and the wood products chain. Included are also a bioenergy module, a financial module and a carbon accounting module. The model is applicable to many different situations: afforestation projects, agroforestry systems, and selective logging systems. The model is freely available from the web, together with numerous examples. The model has many users. The two earlier versions of the model have been downloaded already almost 2000 times
Research@WUR arrow_drop_down Wageningen Staff PublicationsExternal research report . 2004Data sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10568/19184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Wageningen Staff PublicationsExternal research report . 2004Data sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10568/19184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 NetherlandsPublisher:Elsevier BV Fangyuan Yu; Tiejun Wang; Thomas A. Groen; Andrew K. Skidmore; Xuefei Yang; Keping Ma; Zhifeng Wu;pmid: 31096381
Biodiversity loss and variation in species responses to climate and land use change have been found across broad taxonomic groups. However, whether species from the same taxonomic group with distinct geographical ranges will respond differently is poorly understood. The aim of this study is to predict the potential impacts of future climate and land use change on the distribution of narrow- and wide-ranging Rhododendron species, and estimate their relative contribution in China. We applied the presence-only ecological niche model MaxEnt to predict the distribution of 10 narrow-ranging and 10 wide-ranging Rhododendron species for the year 2070, using three general circulation models and three scenarios of climate and land use change. We measured the predicted distribution change of each species using change ratio, distance and direction of core range shifts, and niche overlap using Schoener's D. We found that the distribution areas of six narrow-ranging species would decrease, of which one species would go extinct. The remaining four narrow-ranging species would experience range expansion. Distribution of all the wide-ranging Rhododendron species would decrease. All Rhododendrons will shift to the northwest. We conclude that Rhododendron species generally will be negatively affected by the climatic and land use change expected in 2070 from the three scenarios evaluated in this study, but some narrow-ranging species may be positively influenced. Narrow-ranging Rhododendron species are more vulnerable compared to wide-ranging Rhododendron species. This study demonstrated that the effects of climate and land use change on alpine and subalpine plant species is species-specific, thereby strengthening our understanding of the impacts of climate and land use change on plant distribution.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019Data sources: University of Twente Research InformationThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Netherlands, FrancePublisher:Elsevier BV Akpoti, Komlavi; Groen, T.; Dossou-Yovo, E.; Kabo-bah, A. T.; Zwart, Sander J.;handle: 10568/119581
CONTEXT: Although rice production has increased significantly in the last decade in West Africa, the region is far from being rice self-sufficient. Inland valleys (IVs) with their relatively higher water content and soil fertility compared to the surrounding uplands are the main rice-growing agroecosystem. They are being promoted by governments and development agencies as future food baskets of the region. However, West Africa's crop production is estimated to be negatively affected by climate change due to the strong dependence of its agriculture on rainfall.OBJECTIVE: The main objective of the study is to apply a set of machine learning models to quantify the extent of climate change impact on land suitability for rice using the presence of rice-only data in IVs along with bioclimatic indicators.METHODS: We used a spatially explicit modeling approach based on correlative Ecological Niche Modeling. We deployed 4 algorithms (Boosted Regression Trees, Generalized Linear Model, Maximum Entropy, and Random Forest) for 4-time periods (the 2030s, 2050s, 2070s, and 2080s) of the 4 Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8) from an ensemble set of 32 spatially downscaled and bias-corrected Global Circulation Models climate data.RESULTS AND CONCLUSIONS: The overall trend showed a decrease in suitable areas compared to the baseline as a function of changes in temperature and precipitation by the order of 22–33% area loss under the lowest reduction scenarios and more than 50% in extreme cases. Isothermality or how large the day to night temperatures oscillate relative to the annual oscillations has a large impact on area losses while precipitation increase accounts for most of the areas with no change in suitability. Strong adaptation measures along with technological advancement and adoption will be needed to cope with the adverse effects of climate change on inland valley rice areas in the sub-region.SIGNIFICANCE: The demand for rice in West Africa is huge. For the rice self-sufficiency agenda of the region, “where” and “how much” land resources are available is key and requires long-term, informed planning. Farmers can only adapt when they switch to improved breeds, providing that they are suited for the new conditions. Our results stress the need for land use planning that considers potential climate change impacts to define the best areas and growing systems to produce rice under multiple future climate change uncertainties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2022.103429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2022.103429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 NetherlandsPublisher:Cambridge University Press (CUP) Groen, T.A.; van Langevelde, F.; van de Vijver, C.A.D.M.; Govender, N.; Prins, H.H.T.;Abstract:In this paper, we investigate which factors determine tree clustering in Southern African savannas. This was tested by measuring clustering of trees using the T-squared sampling method in plots of the Kruger National Park experimental burning programme in South Africa. Fire return interval is the main treatment in these plots, but also several auxiliary determining parameters like clay content in the soil, diameter of tree canopies, understorey composition, tree species diversity and average annual rainfall were measured while sampling. In the Kruger National Park 48 plots distributed over four different landscape types and with three different burning treatments (never, once every 3 y and annually) were sampled. First, we related the clustering of trees to these environmental variables. When looking at the most abundant species in each plot, the analysis revealed that clustering is mainly correlated with clay content in the soil. This analysis also showed that fire frequency had a positive effect on the clustering of tree species that are not very abundant. We suggest that less abundant species might be less resistant to fire and therefore adopt a mechanism of clustering to exclude grass fires under their canopy. Finally, we tested the effect of clustering on the impact of fire on trees by analysing the relationship between the distance of a tree to its nearest neighbour and its canopy diameter. We found that clustering reduces the damaging effect of fire on trees. Our study contributes to understanding of savanna functioning by showing which processes are relevant in the distribution of savanna trees.
Wageningen Staff Pub... arrow_drop_down Journal of Tropical EcologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Journal of Tropical EcologyArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0266467408004872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Journal of Tropical EcologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Journal of Tropical EcologyArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0266467408004872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu