- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Serbia, Spain, Slovenia, Italy, Switzerland, Canada, ItalyPublisher:Canadian Science Publishing Funded by:EC | CARE4CEC| CARE4CPretzsch, Hans; Hilmers, Torben; Biber, Peter; Avdagić, Admir; Binder, Franz; Bončina, Andrej; Bosela, Michal; Dobor, Laura; Forrester, David I.; Lévesque, Mathieu; Ibrahimspahić, Aida; Nagel, Thomas A.; del Río, Miren; Sitkova, Zuzana; Schütze, Gerhard; Stajić, Branko; Stojanović, Dejan; Uhl, Enno; Zlatanov, Tzvetan; Tognetti, Roberto;handle: 10261/345001 , 20.500.12556/RUL-114967 , 11695/93119 , 1807/100783
In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 × 106 ha at elevations between ∼600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today’s growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.
Canadian Journal of ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2020Canadian Journal of Forest ResearchArticle . 2020 . Peer-reviewedLicense: CSP TDMData sources: CrossrefCanadian Journal of Forest ResearchArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/cjfr-2019-0368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 38 Powered bymore_vert Canadian Journal of ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2020Canadian Journal of Forest ResearchArticle . 2020 . Peer-reviewedLicense: CSP TDMData sources: CrossrefCanadian Journal of Forest ResearchArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/cjfr-2019-0368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Pajtík Jozef; Sitková Zuzana; Marčiš Peter; Bošeľa Michal; Pavlenda Pavel; Konôpka Bohdan;Abstract The study deals with the analysis of the impact of climate and ground water table level on radial increment and defoliation of Scots pine (Pinus sylvestris L.) growing on sandy soils. The research was performed in the area of the Borska nížina (i.e. Borská Lowland, situated in southwest of Slovakia), where a substantial die-back of pine trees has been observed in the last decade. Increment measurements and defoliation assessment were performed at 150 adult trees of Scots pine growing at three permanent monitoring plots within the international network of ICP Forests during the years 1989–2018. We examined the impact of climatic and hydrological factors on selected features of pine using the methods of correlation analysis and linear mixed models. Statistical analyses confirmed that the annual radial increment of Scots pine significantly depended on the mean air temperature from June to August, and mean ground water level in the mentioned months. These two factors also significantly correlated with crown defoliation. The factors explained 26% and 32% of increment and defoliation variability, respectively. From the long-term perspective, our analyses indicated that the decrease of ground water level by 0.5 m in summer resulted in the increase of defoliation by 10%. The obtained results indicate a further increase of Scots pine die-back on easy-to-dry sandy soils in regions with low precipitation totals, particularly considering the ongoing climate change and its inherent factors.
Central European For... arrow_drop_down Central European Forestry JournalArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/forj-2022-0002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Central European For... arrow_drop_down Central European Forestry JournalArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/forj-2022-0002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Publicly fundedHelena Hlavatá; Zuzana Sitková; Rudolf Petráš; Michal Bošeľa; Tibor Priwitzer; Jozef Pajtík; Brian Tobin; Róbert Sedmák;pmid: 24060740
Silver fir is one of the most productive and ecologically valuable native European tree species, however, it has been experiencing decline which has periodically occurred over its natural range. This paper aims to investigate the recent climate-growth relationships of silver fir (Abies alba Mill.) and its temporal change along the course of its life. Long-term tree-ring databases, as well as records on climate, atmospheric SO2, NO3 and acid concentrations from four different regions in the Western Carpathians were used. The results provide clear evidence of significant increase of silver fir's radial increment over the entire Western Carpathian area since 1970-1980. The results indicated that the most probable factors behind the rapid recovery of tree radial increment were reductions in emissions of NO3 and SO2, alongside a significant increase in mean June, July and April temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2013.08.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2013.08.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Spain, Netherlands, Belgium, Netherlands, Switzerland, Finland, Spain, Italy, Czech Republic, Sweden, Spain, Ireland, Germany, Czech Republic, Germany, AustriaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | Inter- and intra-specific..., FWF | Analysis of Norway Spruce..., SNSF | ICOS-CH Phase 2 +7 projectsSNSF| Inter- and intra-specific water-use strategies of European trees: towards a better mechanistic understanding of tree performance during drought and warming ,FWF| Analysis of Norway Spruce Rust-Resistance ,SNSF| ICOS-CH Phase 2 ,SNSF| Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR) ,FWF| Conifer radial stem growth in response to drought ,SNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,ANR| FOREPRO ,ANR| ARBRE ,EC| VERIFY ,FWF| Carbon allocation and growth of Scots pineAuthors: Salomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; +80 AuthorsSalomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; Stegehuis, Annemiek I.; Smiljanic, Marko; Poyatos, Rafael; Babst, Flurin; Cienciala, Emil; Fonti, Patrick; Lerink, Bass J.W.; Lindner, Marcus; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Nabuurs, Gert-Jan; van der Maaten, Ernst; von Arx, Georg; Bär, Andreas; Akhmetzyanov, Linar; Balanzategui, Daniel; Bellan, Michal; Bendix, Jörg; Berveiller, Daniel; Blaženec, Miroslav; Čada, Vojtěch; Carraro, Vinicio; Cecchini, Sébastien; Chan, Tommy; Conedera, Marco; Delpierre, Nicolas; Delzon, Sylvain; Ditmarová, Lubica; Doležal, Jiří; Dufrêne, Eric; Edvardsson, Johannes; Ehekircher, Stefan; Forner, Alicia; Frouz, Jan; Ganthaler, Andrea; Gryc, Vladimír; Güney, Aylin; Heinrich, Ingo; Hentschel, Rainer; Janda, Pavel; Ježík, Marek; Kahle, Hans-Peter; Kahle, Hans-Peter; Knüsel, Simon; Krejza, Jan; Kuberski, Łukasz; Kučera, Jiří; Lebourgeois, François; Mikoláš, Martin; Matula, Radim; Mayr, Stefan; Oberhuber, Walter; Obojes, Nikolaus; Obojes, Nikolaus; Osborne, Bruce; Paljakka, Teemu; Plichta, Roman; Rabbel, Inke; Rathgeber, Cyrille B.K.; Salmon, Yann; Saunder, Matthew; Scharnweber, Tobias; Sitková, Zuzana; Stangler, Dominik Florian; Stereńczak, Krzysztof; Stereńczak, Marko; Střelcová, Katarína; Světlík, Jan; Svodoba, Miroslav; Tobin, Brian; Trotsiuk, Volodymyr; Urban, Josef; Valladares Ros, Fernando; Vavrčík, Hanuš; Vejpustková, Monika; Walthert, Lorenz; Wilmking, Martin; Zin, Ewa; Zou, Junliang; Steppe, Kathy;pmid: 35013178
pmc: PMC8748979
AbstractHeatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
SLU publication data... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27579-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 50visibility views 50 download downloads 86 Powered bymore_vert SLU publication data... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27579-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 Serbia, Norway, Italy, Spain, Spain, Spain, Italy, Switzerland, SloveniaPublisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., EC | CARE4CMESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200197 (Institute of Lowland Forestry and Environment, Novi Sad) ,EC| CARE4CMiren del Río; Marta Vergarechea; Torben Hilmers; Josu G Alday; Admir Avdagić; Franz Binderh; Michal Bosela; Laura Dobor; David I. Forrester; Velid Halilović; Aida Ibrahimspahić; Matija Klopcic; Mathieu Lévesque; Thomas A. Nagel; Zuzana Sitkova; Gerhard Schütze; Branko Stajić; Dejan Stojanović; Enno Uhl; Tzvetan Zlatanov; Roberto Tognetti; Hans Pretzsch;© 2020 The Authors Spruce-fir-beech mixed forests cover a large area in European mountain regions, with high ecological and socio-economic importance. As elevation-zone systems they are highly affected by climate change, which is modifying species growth patterns and productivity shifts among species. The extent to which associated tree species can access resources and grow asynchronously may affect their resistance and persistence under climate change. Intra-specific synchrony in annual tree growth is a good indicator of species specific dependence on environmental conditions variability. However, little attention has been paid to explore the role of the inter-specific growth asynchrony in the adaptation of mixed forests to climate change. Here we used a database of 1790 tree-ring series collected from 28 experimental plots in spruce-fir-beech mixed forests across Europe to explore how spatio-temporal patterns of the intra- and inter-specific growth synchrony relate to climate variation during the past century. We further examined whether synchrony in growth response to inter-annual environmental fluctuations depended on site conditions. We found that the inter-specific growth synchrony was always lower than the intra-specific synchrony, for both high (inter-annual fluctuations) and low frequency (mid- to long-term) growth variation, suggesting between species niche complementarity at both temporal levels. Intra- and inter-specific synchronies in inter-annual growth fluctuations significantly changed along elevation, being greater at higher elevations. Moreover, the climate warming likely induced temporal changes in synchrony, but the effect varied along the elevation gradient. The synchrony strongly intensified at lower elevations likely due to climate warming and drying conditions. Our results suggest that intra- and inter-specific growth synchrony can be used as an indicator of temporal niche complementarity among species. We conclude that spruce-fir-beech mixtures should be preferred against mono-specific forests to buffer climate change impacts in mountain regions. Forest Ecology and Management, 479 ISSN:0378-1127 ISSN:1872-7042
Forest Ecology and M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of LjubljanaResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2021Forest Ecology and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefForest Ecology and ManagementArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 73visibility views 73 download downloads 141 Powered bymore_vert Forest Ecology and M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of LjubljanaResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2021Forest Ecology and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefForest Ecology and ManagementArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Serbia, Spain, Slovenia, Italy, Switzerland, Canada, ItalyPublisher:Canadian Science Publishing Funded by:EC | CARE4CEC| CARE4CPretzsch, Hans; Hilmers, Torben; Biber, Peter; Avdagić, Admir; Binder, Franz; Bončina, Andrej; Bosela, Michal; Dobor, Laura; Forrester, David I.; Lévesque, Mathieu; Ibrahimspahić, Aida; Nagel, Thomas A.; del Río, Miren; Sitkova, Zuzana; Schütze, Gerhard; Stajić, Branko; Stojanović, Dejan; Uhl, Enno; Zlatanov, Tzvetan; Tognetti, Roberto;handle: 10261/345001 , 20.500.12556/RUL-114967 , 11695/93119 , 1807/100783
In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 × 106 ha at elevations between ∼600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today’s growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.
Canadian Journal of ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2020Canadian Journal of Forest ResearchArticle . 2020 . Peer-reviewedLicense: CSP TDMData sources: CrossrefCanadian Journal of Forest ResearchArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/cjfr-2019-0368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 38 Powered bymore_vert Canadian Journal of ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2020Canadian Journal of Forest ResearchArticle . 2020 . Peer-reviewedLicense: CSP TDMData sources: CrossrefCanadian Journal of Forest ResearchArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/cjfr-2019-0368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Pajtík Jozef; Sitková Zuzana; Marčiš Peter; Bošeľa Michal; Pavlenda Pavel; Konôpka Bohdan;Abstract The study deals with the analysis of the impact of climate and ground water table level on radial increment and defoliation of Scots pine (Pinus sylvestris L.) growing on sandy soils. The research was performed in the area of the Borska nížina (i.e. Borská Lowland, situated in southwest of Slovakia), where a substantial die-back of pine trees has been observed in the last decade. Increment measurements and defoliation assessment were performed at 150 adult trees of Scots pine growing at three permanent monitoring plots within the international network of ICP Forests during the years 1989–2018. We examined the impact of climatic and hydrological factors on selected features of pine using the methods of correlation analysis and linear mixed models. Statistical analyses confirmed that the annual radial increment of Scots pine significantly depended on the mean air temperature from June to August, and mean ground water level in the mentioned months. These two factors also significantly correlated with crown defoliation. The factors explained 26% and 32% of increment and defoliation variability, respectively. From the long-term perspective, our analyses indicated that the decrease of ground water level by 0.5 m in summer resulted in the increase of defoliation by 10%. The obtained results indicate a further increase of Scots pine die-back on easy-to-dry sandy soils in regions with low precipitation totals, particularly considering the ongoing climate change and its inherent factors.
Central European For... arrow_drop_down Central European Forestry JournalArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/forj-2022-0002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Central European For... arrow_drop_down Central European Forestry JournalArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/forj-2022-0002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Publicly fundedHelena Hlavatá; Zuzana Sitková; Rudolf Petráš; Michal Bošeľa; Tibor Priwitzer; Jozef Pajtík; Brian Tobin; Róbert Sedmák;pmid: 24060740
Silver fir is one of the most productive and ecologically valuable native European tree species, however, it has been experiencing decline which has periodically occurred over its natural range. This paper aims to investigate the recent climate-growth relationships of silver fir (Abies alba Mill.) and its temporal change along the course of its life. Long-term tree-ring databases, as well as records on climate, atmospheric SO2, NO3 and acid concentrations from four different regions in the Western Carpathians were used. The results provide clear evidence of significant increase of silver fir's radial increment over the entire Western Carpathian area since 1970-1980. The results indicated that the most probable factors behind the rapid recovery of tree radial increment were reductions in emissions of NO3 and SO2, alongside a significant increase in mean June, July and April temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2013.08.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2013.08.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Spain, Netherlands, Belgium, Netherlands, Switzerland, Finland, Spain, Italy, Czech Republic, Sweden, Spain, Ireland, Germany, Czech Republic, Germany, AustriaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | Inter- and intra-specific..., FWF | Analysis of Norway Spruce..., SNSF | ICOS-CH Phase 2 +7 projectsSNSF| Inter- and intra-specific water-use strategies of European trees: towards a better mechanistic understanding of tree performance during drought and warming ,FWF| Analysis of Norway Spruce Rust-Resistance ,SNSF| ICOS-CH Phase 2 ,SNSF| Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR) ,FWF| Conifer radial stem growth in response to drought ,SNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,ANR| FOREPRO ,ANR| ARBRE ,EC| VERIFY ,FWF| Carbon allocation and growth of Scots pineAuthors: Salomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; +80 AuthorsSalomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; Stegehuis, Annemiek I.; Smiljanic, Marko; Poyatos, Rafael; Babst, Flurin; Cienciala, Emil; Fonti, Patrick; Lerink, Bass J.W.; Lindner, Marcus; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Nabuurs, Gert-Jan; van der Maaten, Ernst; von Arx, Georg; Bär, Andreas; Akhmetzyanov, Linar; Balanzategui, Daniel; Bellan, Michal; Bendix, Jörg; Berveiller, Daniel; Blaženec, Miroslav; Čada, Vojtěch; Carraro, Vinicio; Cecchini, Sébastien; Chan, Tommy; Conedera, Marco; Delpierre, Nicolas; Delzon, Sylvain; Ditmarová, Lubica; Doležal, Jiří; Dufrêne, Eric; Edvardsson, Johannes; Ehekircher, Stefan; Forner, Alicia; Frouz, Jan; Ganthaler, Andrea; Gryc, Vladimír; Güney, Aylin; Heinrich, Ingo; Hentschel, Rainer; Janda, Pavel; Ježík, Marek; Kahle, Hans-Peter; Kahle, Hans-Peter; Knüsel, Simon; Krejza, Jan; Kuberski, Łukasz; Kučera, Jiří; Lebourgeois, François; Mikoláš, Martin; Matula, Radim; Mayr, Stefan; Oberhuber, Walter; Obojes, Nikolaus; Obojes, Nikolaus; Osborne, Bruce; Paljakka, Teemu; Plichta, Roman; Rabbel, Inke; Rathgeber, Cyrille B.K.; Salmon, Yann; Saunder, Matthew; Scharnweber, Tobias; Sitková, Zuzana; Stangler, Dominik Florian; Stereńczak, Krzysztof; Stereńczak, Marko; Střelcová, Katarína; Světlík, Jan; Svodoba, Miroslav; Tobin, Brian; Trotsiuk, Volodymyr; Urban, Josef; Valladares Ros, Fernando; Vavrčík, Hanuš; Vejpustková, Monika; Walthert, Lorenz; Wilmking, Martin; Zin, Ewa; Zou, Junliang; Steppe, Kathy;pmid: 35013178
pmc: PMC8748979
AbstractHeatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
SLU publication data... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27579-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 50visibility views 50 download downloads 86 Powered bymore_vert SLU publication data... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27579-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 Serbia, Norway, Italy, Spain, Spain, Spain, Italy, Switzerland, SloveniaPublisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., EC | CARE4CMESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200197 (Institute of Lowland Forestry and Environment, Novi Sad) ,EC| CARE4CMiren del Río; Marta Vergarechea; Torben Hilmers; Josu G Alday; Admir Avdagić; Franz Binderh; Michal Bosela; Laura Dobor; David I. Forrester; Velid Halilović; Aida Ibrahimspahić; Matija Klopcic; Mathieu Lévesque; Thomas A. Nagel; Zuzana Sitkova; Gerhard Schütze; Branko Stajić; Dejan Stojanović; Enno Uhl; Tzvetan Zlatanov; Roberto Tognetti; Hans Pretzsch;© 2020 The Authors Spruce-fir-beech mixed forests cover a large area in European mountain regions, with high ecological and socio-economic importance. As elevation-zone systems they are highly affected by climate change, which is modifying species growth patterns and productivity shifts among species. The extent to which associated tree species can access resources and grow asynchronously may affect their resistance and persistence under climate change. Intra-specific synchrony in annual tree growth is a good indicator of species specific dependence on environmental conditions variability. However, little attention has been paid to explore the role of the inter-specific growth asynchrony in the adaptation of mixed forests to climate change. Here we used a database of 1790 tree-ring series collected from 28 experimental plots in spruce-fir-beech mixed forests across Europe to explore how spatio-temporal patterns of the intra- and inter-specific growth synchrony relate to climate variation during the past century. We further examined whether synchrony in growth response to inter-annual environmental fluctuations depended on site conditions. We found that the inter-specific growth synchrony was always lower than the intra-specific synchrony, for both high (inter-annual fluctuations) and low frequency (mid- to long-term) growth variation, suggesting between species niche complementarity at both temporal levels. Intra- and inter-specific synchronies in inter-annual growth fluctuations significantly changed along elevation, being greater at higher elevations. Moreover, the climate warming likely induced temporal changes in synchrony, but the effect varied along the elevation gradient. The synchrony strongly intensified at lower elevations likely due to climate warming and drying conditions. Our results suggest that intra- and inter-specific growth synchrony can be used as an indicator of temporal niche complementarity among species. We conclude that spruce-fir-beech mixtures should be preferred against mono-specific forests to buffer climate change impacts in mountain regions. Forest Ecology and Management, 479 ISSN:0378-1127 ISSN:1872-7042
Forest Ecology and M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of LjubljanaResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2021Forest Ecology and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefForest Ecology and ManagementArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 73visibility views 73 download downloads 141 Powered bymore_vert Forest Ecology and M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of LjubljanaResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2021Forest Ecology and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefForest Ecology and ManagementArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu