Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Usama Ahmed; Nabeel Ahmad; Ali Rauf; Md. Selim Arif Sher Shah; +2 Authors

    Abstract The elevated energy demands from past decades has created the energy gaps which can mainly be fulfilled through the consumption of natural fossil fuels but at the expense of increased greenhouse gas emissions. Therefore, the need of clean and sustainable options to meet energy gaps have increased significantly. Gasification and steam methane reforming are the efficient technologies which resourcefully produce the syngas and hydrogen from coal and natural gas, respectively. The syngas and hydrogen can be further utilized to generate power or other Fischer Tropsch chemicals. In this study, two process models are developed and technically compared to analyze the production capacity of syngas and hydrogen. First model is developed based on conventional entrained flow gasification process which is validated with data provided by DOE followed by its integration with the reforming process that leads to the second model. The integrated gasification and reforming process model is developed to maximize the hydrogen production while reducing the overall carbon dioxide emissions. Furthermore, the integrated model eradicates the possibility of reformer’s catalyst deactivation due to significant amount of H2S present in the coal derived syngas. It has been seen from results that updated model offers 37% increase in H2/CO ratio, 10% increase in cold gas efficiency (CGE), 25% increase in overall H2 production, and 13% reduction in CO2 emission per unit amount of hydrogen production compared to base case model. Furthermore, economic analysis indicated 8% reduction in cost for case 2 while presenting 7% enhanced hydrogen contents.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Usama Ahmed; Nabeel Ahmad; Ali Rauf; Md. Selim Arif Sher Shah; +2 Authors

    Abstract The elevated energy demands from past decades has created the energy gaps which can mainly be fulfilled through the consumption of natural fossil fuels but at the expense of increased greenhouse gas emissions. Therefore, the need of clean and sustainable options to meet energy gaps have increased significantly. Gasification and steam methane reforming are the efficient technologies which resourcefully produce the syngas and hydrogen from coal and natural gas, respectively. The syngas and hydrogen can be further utilized to generate power or other Fischer Tropsch chemicals. In this study, two process models are developed and technically compared to analyze the production capacity of syngas and hydrogen. First model is developed based on conventional entrained flow gasification process which is validated with data provided by DOE followed by its integration with the reforming process that leads to the second model. The integrated gasification and reforming process model is developed to maximize the hydrogen production while reducing the overall carbon dioxide emissions. Furthermore, the integrated model eradicates the possibility of reformer’s catalyst deactivation due to significant amount of H2S present in the coal derived syngas. It has been seen from results that updated model offers 37% increase in H2/CO ratio, 10% increase in cold gas efficiency (CGE), 25% increase in overall H2 production, and 13% reduction in CO2 emission per unit amount of hydrogen production compared to base case model. Furthermore, economic analysis indicated 8% reduction in cost for case 2 while presenting 7% enhanced hydrogen contents.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Usama Ahmed; Nabeel Ahmad; Ali Rauf; Md. Selim Arif Sher Shah; +2 Authors

    Abstract The elevated energy demands from past decades has created the energy gaps which can mainly be fulfilled through the consumption of natural fossil fuels but at the expense of increased greenhouse gas emissions. Therefore, the need of clean and sustainable options to meet energy gaps have increased significantly. Gasification and steam methane reforming are the efficient technologies which resourcefully produce the syngas and hydrogen from coal and natural gas, respectively. The syngas and hydrogen can be further utilized to generate power or other Fischer Tropsch chemicals. In this study, two process models are developed and technically compared to analyze the production capacity of syngas and hydrogen. First model is developed based on conventional entrained flow gasification process which is validated with data provided by DOE followed by its integration with the reforming process that leads to the second model. The integrated gasification and reforming process model is developed to maximize the hydrogen production while reducing the overall carbon dioxide emissions. Furthermore, the integrated model eradicates the possibility of reformer’s catalyst deactivation due to significant amount of H2S present in the coal derived syngas. It has been seen from results that updated model offers 37% increase in H2/CO ratio, 10% increase in cold gas efficiency (CGE), 25% increase in overall H2 production, and 13% reduction in CO2 emission per unit amount of hydrogen production compared to base case model. Furthermore, economic analysis indicated 8% reduction in cost for case 2 while presenting 7% enhanced hydrogen contents.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Usama Ahmed; Nabeel Ahmad; Ali Rauf; Md. Selim Arif Sher Shah; +2 Authors

    Abstract The elevated energy demands from past decades has created the energy gaps which can mainly be fulfilled through the consumption of natural fossil fuels but at the expense of increased greenhouse gas emissions. Therefore, the need of clean and sustainable options to meet energy gaps have increased significantly. Gasification and steam methane reforming are the efficient technologies which resourcefully produce the syngas and hydrogen from coal and natural gas, respectively. The syngas and hydrogen can be further utilized to generate power or other Fischer Tropsch chemicals. In this study, two process models are developed and technically compared to analyze the production capacity of syngas and hydrogen. First model is developed based on conventional entrained flow gasification process which is validated with data provided by DOE followed by its integration with the reforming process that leads to the second model. The integrated gasification and reforming process model is developed to maximize the hydrogen production while reducing the overall carbon dioxide emissions. Furthermore, the integrated model eradicates the possibility of reformer’s catalyst deactivation due to significant amount of H2S present in the coal derived syngas. It has been seen from results that updated model offers 37% increase in H2/CO ratio, 10% increase in cold gas efficiency (CGE), 25% increase in overall H2 production, and 13% reduction in CO2 emission per unit amount of hydrogen production compared to base case model. Furthermore, economic analysis indicated 8% reduction in cost for case 2 while presenting 7% enhanced hydrogen contents.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph