- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Spain, France, Portugal, Denmark, FrancePublisher:Elsevier BV Authors:Ouellet-Plamondon, Claudiane;
Ramseier, Livia;Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIREBalouktsi, Maria;
Balouktsi, Maria
Balouktsi, Maria in OpenAIREDelem, Laetitia;
+28 AuthorsDelem, Laetitia
Delem, Laetitia in OpenAIREOuellet-Plamondon, Claudiane;
Ramseier, Livia;Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIREBalouktsi, Maria;
Balouktsi, Maria
Balouktsi, Maria in OpenAIREDelem, Laetitia;
Foliente, Greg;Delem, Laetitia
Delem, Laetitia in OpenAIREFrancart, Nicolas;
Garcia-Martinez, Antonio; Hoxha, Endrit; Lützkendorf, Thomas;Francart, Nicolas
Francart, Nicolas in OpenAIRENygaard Rasmussen, Freja;
Nygaard Rasmussen, Freja
Nygaard Rasmussen, Freja in OpenAIREPeuportier, Bruno;
Butler, Jarred; Birgisdottir, Harpa;Peuportier, Bruno
Peuportier, Bruno in OpenAIREDowdell, David;
Dowdell, David
Dowdell, David in OpenAIREDixit, Manish Kumar;
Dixit, Manish Kumar
Dixit, Manish Kumar in OpenAIREGomes, Vanessa;
Gomes, Vanessa
Gomes, Vanessa in OpenAIREGomes da Silva, Maristela;
Gómez de Cózar, Juan Carlos; Kjendseth Wiik, Marianne;Gomes da Silva, Maristela
Gomes da Silva, Maristela in OpenAIRELlatas, Carmen;
Llatas, Carmen
Llatas, Carmen in OpenAIREMateus, Ricardo;
Pulgrossi, Lizzie;Mateus, Ricardo
Mateus, Ricardo in OpenAIRERöck, Martin;
Röck, Martin
Röck, Martin in OpenAIRESaade, Marcella Ruschi Mendes;
Saade, Marcella Ruschi Mendes
Saade, Marcella Ruschi Mendes in OpenAIREPasser, Alexander;
Passer, Alexander
Passer, Alexander in OpenAIRESatola, Daniel;
Seo, Seongwon;Satola, Daniel
Satola, Daniel in OpenAIRESoust Verdaguer, Bernardette;
Soust Verdaguer, Bernardette
Soust Verdaguer, Bernardette in OpenAIREVeselka, Jakub;
Veselka, Jakub
Veselka, Jakub in OpenAIREVolf, Martin;
Volf, Martin
Volf, Martin in OpenAIREZhang, Xiaojin;
Zhang, Xiaojin
Zhang, Xiaojin in OpenAIREFrischknecht, Rolf;
Frischknecht, Rolf
Frischknecht, Rolf in OpenAIREhandle: 1822/85687
Abstract Wood and other bio-based building materials are often perceived as a good choice from a climate mitigation perspective. This article compares the life cycle assessment of the same multi-residential building from the perspective of 16 countries participating in the international project Annex 72 of the International Energy Agency to determine the effects of different datasets and methods of accounting for biogenic carbon in wood construction. Three assessment methods are herein considered: two recognized in the standards (the so-called 0/0 method and –1/+1 method) and a variation of the latter (–1/+1* method) used in Australia, Canada, France, and New Zealand. The 0/0 method considers neither fixation in the production stage nor releases of biogenic carbon at the end of a wood product’s life. In contrast, the –1/+1 method accounts for the fixation of biogenic carbon in the production stage and its release in the end-of-life stage, irrespective of the disposal scenario (recycling, incineration orlandfill). The -1/+1 method assumes that landfills offer only a temporary sequestration of carbon. In the –1/+1* variation, landfills and recycling are considered a partly permanent sequestration of biogenic carbon and thus fewer emissions are accounted for in the end-of-life stage. We examine the variability of the calculated life cycle-based greenhouse gas emissions calculated for a case study building by each participating country, within the same assessment method and across the methods. The results vary substantially. The main reasons for deviations are whether or not landfills and recycling are considered a partly permanent sequestration of biogenic carbon and a mismatch in the biogenic carbon balance. Our findings support the need for further research and to develop practical guidelines to harmonize life cycle assessment methods of buildings with bio-based materials.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMJournal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.136834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMJournal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.136834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Spain, France, Portugal, Denmark, FrancePublisher:Elsevier BV Authors:Ouellet-Plamondon, Claudiane;
Ramseier, Livia;Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIREBalouktsi, Maria;
Balouktsi, Maria
Balouktsi, Maria in OpenAIREDelem, Laetitia;
+28 AuthorsDelem, Laetitia
Delem, Laetitia in OpenAIREOuellet-Plamondon, Claudiane;
Ramseier, Livia;Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIREBalouktsi, Maria;
Balouktsi, Maria
Balouktsi, Maria in OpenAIREDelem, Laetitia;
Foliente, Greg;Delem, Laetitia
Delem, Laetitia in OpenAIREFrancart, Nicolas;
Garcia-Martinez, Antonio; Hoxha, Endrit; Lützkendorf, Thomas;Francart, Nicolas
Francart, Nicolas in OpenAIRENygaard Rasmussen, Freja;
Nygaard Rasmussen, Freja
Nygaard Rasmussen, Freja in OpenAIREPeuportier, Bruno;
Butler, Jarred; Birgisdottir, Harpa;Peuportier, Bruno
Peuportier, Bruno in OpenAIREDowdell, David;
Dowdell, David
Dowdell, David in OpenAIREDixit, Manish Kumar;
Dixit, Manish Kumar
Dixit, Manish Kumar in OpenAIREGomes, Vanessa;
Gomes, Vanessa
Gomes, Vanessa in OpenAIREGomes da Silva, Maristela;
Gómez de Cózar, Juan Carlos; Kjendseth Wiik, Marianne;Gomes da Silva, Maristela
Gomes da Silva, Maristela in OpenAIRELlatas, Carmen;
Llatas, Carmen
Llatas, Carmen in OpenAIREMateus, Ricardo;
Pulgrossi, Lizzie;Mateus, Ricardo
Mateus, Ricardo in OpenAIRERöck, Martin;
Röck, Martin
Röck, Martin in OpenAIRESaade, Marcella Ruschi Mendes;
Saade, Marcella Ruschi Mendes
Saade, Marcella Ruschi Mendes in OpenAIREPasser, Alexander;
Passer, Alexander
Passer, Alexander in OpenAIRESatola, Daniel;
Seo, Seongwon;Satola, Daniel
Satola, Daniel in OpenAIRESoust Verdaguer, Bernardette;
Soust Verdaguer, Bernardette
Soust Verdaguer, Bernardette in OpenAIREVeselka, Jakub;
Veselka, Jakub
Veselka, Jakub in OpenAIREVolf, Martin;
Volf, Martin
Volf, Martin in OpenAIREZhang, Xiaojin;
Zhang, Xiaojin
Zhang, Xiaojin in OpenAIREFrischknecht, Rolf;
Frischknecht, Rolf
Frischknecht, Rolf in OpenAIREhandle: 1822/85687
Abstract Wood and other bio-based building materials are often perceived as a good choice from a climate mitigation perspective. This article compares the life cycle assessment of the same multi-residential building from the perspective of 16 countries participating in the international project Annex 72 of the International Energy Agency to determine the effects of different datasets and methods of accounting for biogenic carbon in wood construction. Three assessment methods are herein considered: two recognized in the standards (the so-called 0/0 method and –1/+1 method) and a variation of the latter (–1/+1* method) used in Australia, Canada, France, and New Zealand. The 0/0 method considers neither fixation in the production stage nor releases of biogenic carbon at the end of a wood product’s life. In contrast, the –1/+1 method accounts for the fixation of biogenic carbon in the production stage and its release in the end-of-life stage, irrespective of the disposal scenario (recycling, incineration orlandfill). The -1/+1 method assumes that landfills offer only a temporary sequestration of carbon. In the –1/+1* variation, landfills and recycling are considered a partly permanent sequestration of biogenic carbon and thus fewer emissions are accounted for in the end-of-life stage. We examine the variability of the calculated life cycle-based greenhouse gas emissions calculated for a case study building by each participating country, within the same assessment method and across the methods. The results vary substantially. The main reasons for deviations are whether or not landfills and recycling are considered a partly permanent sequestration of biogenic carbon and a mismatch in the biogenic carbon balance. Our findings support the need for further research and to develop practical guidelines to harmonize life cycle assessment methods of buildings with bio-based materials.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMJournal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.136834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMJournal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.136834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Anna Luiza Macachero Victor Rodrigues; Álvaro Ávila Franklin Mendes;Vanessa Gomes da Silva;
Arnaldo Forti Battagin; +2 AuthorsVanessa Gomes da Silva
Vanessa Gomes da Silva in OpenAIREAnna Luiza Macachero Victor Rodrigues; Álvaro Ávila Franklin Mendes;Vanessa Gomes da Silva;
Arnaldo Forti Battagin;Vanessa Gomes da Silva
Vanessa Gomes da Silva in OpenAIREMarcella Ruschi Mendes Saade;
Maristela Gomes Da Silva;Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREThe synergistic effect of combining supplementary cementitious materials (SCMs) as partial substitutes for clinker improves cement properties and reduces its clinker factor and, hence, its carbon footprint. Limestone-calcined clay cement (LC3)—a family of clinker, calcined clay, and limestone filler mixes—is studied worldwide for its properties equivalent to those of Portland cement. Although slag and fly ash are no longer sufficient to keep up with current commercial blended cements, in the long run, these SCMs can support the development of optimized formulations for the future. By relating the environmental and the mechanical performances, the GHG emission intensity offers a broader assessment and selection perspective. In this article, 13 blended cements were evaluated: ternary, quaternary, and multi-admixture (i.e., OPC plus 4 SCMs) blends with clinker factor between 40 and 50%, composed of—in addition to calcined clay and limestone filler—blast furnace slag and fly ash. Compressive strength was measured at 3, 7, 28, 91, and 365 days. The greenhouse gas (GHG) emissions were estimated through life cycle assessment and related to the blends’ compressive strength unit. Quaternary and multi-addition cements consistently outperformed after 3 days of age, demonstrating the benefits of the synergistic effect between SCMs jointly on GHG emissions and compressive strength. Such an effect enables reducing not only the clinker factor and carbon footprint but also the GHG emission intensity, which relates both. This study showed that the formulated cements, particularly those composed of multi-additions (Series D), are potential alternatives for reducing the GHG emissions, whilst preserving mechanical performance demanded by construction market practices. From a multidisciplinary analysis standpoint, durability assessments are necessary to complement the reported findings, as low clinker contents can affect the pH of the concrete’s pore solution and carbonation which ultimately lead to deterioration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2022.880986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2022.880986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Anna Luiza Macachero Victor Rodrigues; Álvaro Ávila Franklin Mendes;Vanessa Gomes da Silva;
Arnaldo Forti Battagin; +2 AuthorsVanessa Gomes da Silva
Vanessa Gomes da Silva in OpenAIREAnna Luiza Macachero Victor Rodrigues; Álvaro Ávila Franklin Mendes;Vanessa Gomes da Silva;
Arnaldo Forti Battagin;Vanessa Gomes da Silva
Vanessa Gomes da Silva in OpenAIREMarcella Ruschi Mendes Saade;
Maristela Gomes Da Silva;Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREThe synergistic effect of combining supplementary cementitious materials (SCMs) as partial substitutes for clinker improves cement properties and reduces its clinker factor and, hence, its carbon footprint. Limestone-calcined clay cement (LC3)—a family of clinker, calcined clay, and limestone filler mixes—is studied worldwide for its properties equivalent to those of Portland cement. Although slag and fly ash are no longer sufficient to keep up with current commercial blended cements, in the long run, these SCMs can support the development of optimized formulations for the future. By relating the environmental and the mechanical performances, the GHG emission intensity offers a broader assessment and selection perspective. In this article, 13 blended cements were evaluated: ternary, quaternary, and multi-admixture (i.e., OPC plus 4 SCMs) blends with clinker factor between 40 and 50%, composed of—in addition to calcined clay and limestone filler—blast furnace slag and fly ash. Compressive strength was measured at 3, 7, 28, 91, and 365 days. The greenhouse gas (GHG) emissions were estimated through life cycle assessment and related to the blends’ compressive strength unit. Quaternary and multi-addition cements consistently outperformed after 3 days of age, demonstrating the benefits of the synergistic effect between SCMs jointly on GHG emissions and compressive strength. Such an effect enables reducing not only the clinker factor and carbon footprint but also the GHG emission intensity, which relates both. This study showed that the formulated cements, particularly those composed of multi-additions (Series D), are potential alternatives for reducing the GHG emissions, whilst preserving mechanical performance demanded by construction market practices. From a multidisciplinary analysis standpoint, durability assessments are necessary to complement the reported findings, as low clinker contents can affect the pH of the concrete’s pore solution and carbonation which ultimately lead to deterioration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2022.880986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2022.880986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Authors:Nicolas Alaux;
Nicolas Alaux
Nicolas Alaux in OpenAIREMarcella Ruschi Mendes Saade;
Endrit Hoxha;Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREBarbara Truger;
+1 AuthorsBarbara Truger
Barbara Truger in OpenAIRENicolas Alaux;
Nicolas Alaux
Nicolas Alaux in OpenAIREMarcella Ruschi Mendes Saade;
Endrit Hoxha;Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREBarbara Truger;
Barbara Truger
Barbara Truger in OpenAIREAlexander Passer;
Alexander Passer
Alexander Passer in OpenAIREIn order to reduce the greenhouse gas (GHG) emissions of buildings, the literature has investigated many strategies to tackle operational emissions, which are traditionally the largest contributor to overall emissions. As a result, embodied emissions are gaining increased attention, not only due to the decrease in the relative share of operational emissions but also due to increased material needs, e.g. the use of additional thermal insulation in buildings. Some of these strategies, such as the decarbonisation of the energy grid, could also help decrease the embodied emissions of building materials. The objective of this paper is to investigate the influence of increased renewable electricity use in building material production. It also examines future trends in the manufacturing processes – such as an intensified use of bioenergy, improvements in energy efficiency and the introduction of carbon capture and storage – on the GHG emissions of buildings. These strategies are analysed in a combined “future materials” scenario on a macro scale within the Tyrol province in Austria. With a focus on new residential constructions, six design variations of two building case studies are assessed using life cycle assessment. They are then projected to 2050 at the provincial level. The results of the future materials scenario point towards a promising embodied GHG reduction, up to 19% in this analysis. Larger mitigation effects would appear in the 2040s and 2050s, meaning future manufacturing technologies can be seen as a long-term investment. Their reduction potential surpasses the potential impact of an increase in wooden constructions. The latter achieved up to 7% reduction in GHG emissions, which would be mostly visible in the early decades rather than in later ones. These reduction percentages remain lower than those which could be attained at the operational energy level, with reductions of up to 72%. The obtained results are discussed in the light of other published regional and global studies to identify the possible sources of variations. Critical reflections on carbon capture and storage, as well as renewables, additionally highlight the intrinsic challenges of such key technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.135278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.135278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Authors:Nicolas Alaux;
Nicolas Alaux
Nicolas Alaux in OpenAIREMarcella Ruschi Mendes Saade;
Endrit Hoxha;Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREBarbara Truger;
+1 AuthorsBarbara Truger
Barbara Truger in OpenAIRENicolas Alaux;
Nicolas Alaux
Nicolas Alaux in OpenAIREMarcella Ruschi Mendes Saade;
Endrit Hoxha;Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREBarbara Truger;
Barbara Truger
Barbara Truger in OpenAIREAlexander Passer;
Alexander Passer
Alexander Passer in OpenAIREIn order to reduce the greenhouse gas (GHG) emissions of buildings, the literature has investigated many strategies to tackle operational emissions, which are traditionally the largest contributor to overall emissions. As a result, embodied emissions are gaining increased attention, not only due to the decrease in the relative share of operational emissions but also due to increased material needs, e.g. the use of additional thermal insulation in buildings. Some of these strategies, such as the decarbonisation of the energy grid, could also help decrease the embodied emissions of building materials. The objective of this paper is to investigate the influence of increased renewable electricity use in building material production. It also examines future trends in the manufacturing processes – such as an intensified use of bioenergy, improvements in energy efficiency and the introduction of carbon capture and storage – on the GHG emissions of buildings. These strategies are analysed in a combined “future materials” scenario on a macro scale within the Tyrol province in Austria. With a focus on new residential constructions, six design variations of two building case studies are assessed using life cycle assessment. They are then projected to 2050 at the provincial level. The results of the future materials scenario point towards a promising embodied GHG reduction, up to 19% in this analysis. Larger mitigation effects would appear in the 2040s and 2050s, meaning future manufacturing technologies can be seen as a long-term investment. Their reduction potential surpasses the potential impact of an increase in wooden constructions. The latter achieved up to 7% reduction in GHG emissions, which would be mostly visible in the early decades rather than in later ones. These reduction percentages remain lower than those which could be attained at the operational energy level, with reductions of up to 72%. The obtained results are discussed in the light of other published regional and global studies to identify the possible sources of variations. Critical reflections on carbon capture and storage, as well as renewables, additionally highlight the intrinsic challenges of such key technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.135278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.135278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:FapUNIFESP (SciELO) Authors: Vanessa Gomes da Silva; Vanessa Gomes da Silva;Marcella Ruschi Mendes Saade;
Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREAbstract Life cycle assessment (LCA) provides a comprehensive framework for positioning low energy and global warming potential alternatives regarding Portland cement and concrete. Published LCA work on alkali-activated cements is, however, relatively limited. In this paper, we illustrate how LCA critically supports concrete technological studies in the search for low impact concrete mixes. Previous research on breakwater applications explored replacing a low-clinker Portland cement and natural aggregates with seven different alkali-activated blast furnace slag (bfs) binder systems and with coarse and granulated bfs aggregates. Its outcome suggested a sodium silicate-activated bfs formulation as the best match between concrete properties and environmental regulation compliance. To validate this outcome through LCA, our cradle to gate assessments followed ISO 14044 (INTERNATIONAL…, 2006b) and used Ecoinvent v.2.2 and CML baseline 2001 v.2.05. We adopted the ‘net avoided burden approach’ to handle multifunctionality intrinsic to by-product-based AAC. Whilst sodium silicate-activated mixes rivaled the reference regarding GWP, impacts in several categories were increased. LCA highlighted the implications of driving mix selection by focusing on a single environmental impact category.
Ambiente Construído arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2018License: CC BYData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/s1678-86212018000200262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Ambiente Construído arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2018License: CC BYData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/s1678-86212018000200262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:FapUNIFESP (SciELO) Authors: Vanessa Gomes da Silva; Vanessa Gomes da Silva;Marcella Ruschi Mendes Saade;
Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREAbstract Life cycle assessment (LCA) provides a comprehensive framework for positioning low energy and global warming potential alternatives regarding Portland cement and concrete. Published LCA work on alkali-activated cements is, however, relatively limited. In this paper, we illustrate how LCA critically supports concrete technological studies in the search for low impact concrete mixes. Previous research on breakwater applications explored replacing a low-clinker Portland cement and natural aggregates with seven different alkali-activated blast furnace slag (bfs) binder systems and with coarse and granulated bfs aggregates. Its outcome suggested a sodium silicate-activated bfs formulation as the best match between concrete properties and environmental regulation compliance. To validate this outcome through LCA, our cradle to gate assessments followed ISO 14044 (INTERNATIONAL…, 2006b) and used Ecoinvent v.2.2 and CML baseline 2001 v.2.05. We adopted the ‘net avoided burden approach’ to handle multifunctionality intrinsic to by-product-based AAC. Whilst sodium silicate-activated mixes rivaled the reference regarding GWP, impacts in several categories were increased. LCA highlighted the implications of driving mix selection by focusing on a single environmental impact category.
Ambiente Construído arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2018License: CC BYData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/s1678-86212018000200262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Ambiente Construído arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2018License: CC BYData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/s1678-86212018000200262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 15 Jan 2020 Denmark, Switzerland, GermanyPublisher:Elsevier BV Authors:Martin Röck;
Martin Röck
Martin Röck in OpenAIREMarcella Ruschi Mendes Saade;
Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREMaria Balouktsi;
Maria Balouktsi
Maria Balouktsi in OpenAIREFreja Nygaard Rasmussen;
+5 AuthorsFreja Nygaard Rasmussen
Freja Nygaard Rasmussen in OpenAIREMartin Röck;
Martin Röck
Martin Röck in OpenAIREMarcella Ruschi Mendes Saade;
Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREMaria Balouktsi;
Maria Balouktsi
Maria Balouktsi in OpenAIREFreja Nygaard Rasmussen;
Freja Nygaard Rasmussen
Freja Nygaard Rasmussen in OpenAIREHarpa Birgisdottir;
Harpa Birgisdottir
Harpa Birgisdottir in OpenAIRERolf Frischknecht;
Rolf Frischknecht
Rolf Frischknecht in OpenAIREGuillaume Habert;
Guillaume Habert
Guillaume Habert in OpenAIREThomas Lützkendorf;
Thomas Lützkendorf
Thomas Lützkendorf in OpenAIREAlexander Passer;
Alexander Passer
Alexander Passer in OpenAIREApplied Energy, 258 ISSN:0306-2619 ISSN:1872-9118
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 644 citations 644 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 15 Jan 2020 Denmark, Switzerland, GermanyPublisher:Elsevier BV Authors:Martin Röck;
Martin Röck
Martin Röck in OpenAIREMarcella Ruschi Mendes Saade;
Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREMaria Balouktsi;
Maria Balouktsi
Maria Balouktsi in OpenAIREFreja Nygaard Rasmussen;
+5 AuthorsFreja Nygaard Rasmussen
Freja Nygaard Rasmussen in OpenAIREMartin Röck;
Martin Röck
Martin Röck in OpenAIREMarcella Ruschi Mendes Saade;
Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREMaria Balouktsi;
Maria Balouktsi
Maria Balouktsi in OpenAIREFreja Nygaard Rasmussen;
Freja Nygaard Rasmussen
Freja Nygaard Rasmussen in OpenAIREHarpa Birgisdottir;
Harpa Birgisdottir
Harpa Birgisdottir in OpenAIRERolf Frischknecht;
Rolf Frischknecht
Rolf Frischknecht in OpenAIREGuillaume Habert;
Guillaume Habert
Guillaume Habert in OpenAIREThomas Lützkendorf;
Thomas Lützkendorf
Thomas Lützkendorf in OpenAIREAlexander Passer;
Alexander Passer
Alexander Passer in OpenAIREApplied Energy, 258 ISSN:0306-2619 ISSN:1872-9118
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 644 citations 644 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:FapUNIFESP (SciELO) Funded by:FCT | D4FCT| D4Authors: Vanessa Gomes da Silva; Vanessa Gomes da Silva;Marcella Ruschi Mendes Saade;
Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREAbstract Over the past decades, extensive research has been carried out to reduce the environmental impacts associated with the cement and concrete production. Life-cycle assessment (LCA) enables the quantification of the environmental loads and offers a useful perspective to scientifically support such studies. In this paper, we demonstrate LCA’s contribution to the selection of low environmental impact concretes, using breakwater coreloc components as a case study. A detailed experimental study was designed for the selection of an alkali activator for blast furnace slag (bfs) to produce concrete suitable for breakwater structures; for the evaluation of concrete properties and for the performance assessment of full scale elements in the field, as well as in the laboratory. Sodium silicate-activated bfs concrete mixtures achieved the best results in terms of performance requirements. Our cradle-to-gate life-cycle assessments showed that, though this chemical activator indeed produces lower global warming potential mixtures than the reference portland CP V-ARI concrete, it induces relevant impacts in several environmental categories. Such information is critical when selecting and optimizing low-impact concrete mixture design, and would not be detected in typical experimental studies that are exclusively guided by compliance with performance requirements.
Revista IBRACON de E... arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2018License: CC BYData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/s1983-41952018000600010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Revista IBRACON de E... arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2018License: CC BYData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/s1983-41952018000600010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:FapUNIFESP (SciELO) Funded by:FCT | D4FCT| D4Authors: Vanessa Gomes da Silva; Vanessa Gomes da Silva;Marcella Ruschi Mendes Saade;
Marcella Ruschi Mendes Saade
Marcella Ruschi Mendes Saade in OpenAIREAbstract Over the past decades, extensive research has been carried out to reduce the environmental impacts associated with the cement and concrete production. Life-cycle assessment (LCA) enables the quantification of the environmental loads and offers a useful perspective to scientifically support such studies. In this paper, we demonstrate LCA’s contribution to the selection of low environmental impact concretes, using breakwater coreloc components as a case study. A detailed experimental study was designed for the selection of an alkali activator for blast furnace slag (bfs) to produce concrete suitable for breakwater structures; for the evaluation of concrete properties and for the performance assessment of full scale elements in the field, as well as in the laboratory. Sodium silicate-activated bfs concrete mixtures achieved the best results in terms of performance requirements. Our cradle-to-gate life-cycle assessments showed that, though this chemical activator indeed produces lower global warming potential mixtures than the reference portland CP V-ARI concrete, it induces relevant impacts in several environmental categories. Such information is critical when selecting and optimizing low-impact concrete mixture design, and would not be detected in typical experimental studies that are exclusively guided by compliance with performance requirements.
Revista IBRACON de E... arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2018License: CC BYData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/s1983-41952018000600010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Revista IBRACON de E... arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2018License: CC BYData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/s1983-41952018000600010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors:Nadia MIRABELLA;
Nadia MIRABELLA
Nadia MIRABELLA in OpenAIREMartin RÖCK;
Martin RÖCK
Martin RÖCK in OpenAIREMarcella Ruschi Mendes SAADE;
Carolin SPIRINCKX; +3 AuthorsMarcella Ruschi Mendes SAADE
Marcella Ruschi Mendes SAADE in OpenAIRENadia MIRABELLA;
Nadia MIRABELLA
Nadia MIRABELLA in OpenAIREMartin RÖCK;
Martin RÖCK
Martin RÖCK in OpenAIREMarcella Ruschi Mendes SAADE;
Carolin SPIRINCKX; Marc BOSMANS;Marcella Ruschi Mendes SAADE
Marcella Ruschi Mendes SAADE in OpenAIREKaren ALLACKER;
Karen ALLACKER
Karen ALLACKER in OpenAIREAlexander PASSER;
Alexander PASSER
Alexander PASSER in OpenAIREGlobally, the building sector is responsible for more than 40% of energy use and it contributes approximately 30% of the global Greenhouse Gas (GHG) emissions. This high contribution stimulates research and policies to reduce the operational energy use and related GHG emissions of buildings. However, the environmental impacts of buildings can extend wide beyond the operational phase, and the portion of impacts related to the embodied energy of the building becomes relatively more important in low energy buildings. Therefore, the goal of the research is gaining insights into the environmental impacts of various building strategies for energy efficiency requirements compared to the life cycle environmental impacts of the whole building. The goal is to detect and investigate existing trade-offs in current approaches and solutions proposed by the research community. A literature review is driven by six fundamental and specific research questions (RQs), and performed based on two main tasks: (i) selection of literature studies, and (ii) critical analysis of the selected studies in line with the RQs. A final sample of 59 papers and 178 case studies has been collected, and key criteria are systematically analysed in a matrix. The study reveals that the high heterogeneity of the case studies makes it difficult to compare these in a straightforward way, but it allows to provide an overview of current methodological challenges and research gaps. Furthermore, the most complete studies provide valuable insights in the environmental benefits of the identified energy performance strategies over the building life cycle, but also shows the risk of burden shifting if only operational energy use is focused on, or when a limited number of environmental impact categories are assessed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings8080105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings8080105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors:Nadia MIRABELLA;
Nadia MIRABELLA
Nadia MIRABELLA in OpenAIREMartin RÖCK;
Martin RÖCK
Martin RÖCK in OpenAIREMarcella Ruschi Mendes SAADE;
Carolin SPIRINCKX; +3 AuthorsMarcella Ruschi Mendes SAADE
Marcella Ruschi Mendes SAADE in OpenAIRENadia MIRABELLA;
Nadia MIRABELLA
Nadia MIRABELLA in OpenAIREMartin RÖCK;
Martin RÖCK
Martin RÖCK in OpenAIREMarcella Ruschi Mendes SAADE;
Carolin SPIRINCKX; Marc BOSMANS;Marcella Ruschi Mendes SAADE
Marcella Ruschi Mendes SAADE in OpenAIREKaren ALLACKER;
Karen ALLACKER
Karen ALLACKER in OpenAIREAlexander PASSER;
Alexander PASSER
Alexander PASSER in OpenAIREGlobally, the building sector is responsible for more than 40% of energy use and it contributes approximately 30% of the global Greenhouse Gas (GHG) emissions. This high contribution stimulates research and policies to reduce the operational energy use and related GHG emissions of buildings. However, the environmental impacts of buildings can extend wide beyond the operational phase, and the portion of impacts related to the embodied energy of the building becomes relatively more important in low energy buildings. Therefore, the goal of the research is gaining insights into the environmental impacts of various building strategies for energy efficiency requirements compared to the life cycle environmental impacts of the whole building. The goal is to detect and investigate existing trade-offs in current approaches and solutions proposed by the research community. A literature review is driven by six fundamental and specific research questions (RQs), and performed based on two main tasks: (i) selection of literature studies, and (ii) critical analysis of the selected studies in line with the RQs. A final sample of 59 papers and 178 case studies has been collected, and key criteria are systematically analysed in a matrix. The study reveals that the high heterogeneity of the case studies makes it difficult to compare these in a straightforward way, but it allows to provide an overview of current methodological challenges and research gaps. Furthermore, the most complete studies provide valuable insights in the environmental benefits of the identified energy performance strategies over the building life cycle, but also shows the risk of burden shifting if only operational energy use is focused on, or when a limited number of environmental impact categories are assessed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings8080105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings8080105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu