- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 Denmark, United Kingdom, ItalyPublisher:Wiley Funded by:EC | IMBALANCE-PEC| IMBALANCE-PMiquel Ferrín; Laura Márquez; Henning Petersen; Sandrine Salmon; Jean‐François Ponge; Miquel Arnedo; Bridget Emmett; Claus Beier; Inger K. Schmidt; Albert Tietema; Paolo de Angelis; Dario Liberati; Edit Kovács‐Láng; György Kröel‐Dulay; Marc Estiarte; Mireia Bartrons; Josep Peñuelas; Guille Peguero;handle: 2067/47442
AbstractThe capacity to forecast the effects of climate change on biodiversity largely relies on identifying traits capturing mechanistic relationships with the environment through standardized field experiments distributed across relevant spatial scales. The effects of short‐term experimental manipulations on local communities may overlap with regional climate gradients that have been operating during longer time periods. However, to the best of our knowledge, there are no studies simultaneously assessing such long‐term macroecological drivers with local climate manipulations.We analysed this issue with springtails (Class Collembola), one of the dominant soil fauna groups, in a standardized climate manipulation experiment conducted across six European countries encompassing broad climate gradients. We combined community data (near 20K specimens classified into 102 species) with 22 eco‐morphological traits and reconstructed their phylogenetic relationships to track the evolution of adaptations to live at different soil depths, which is key to cope with desiccation. We then applied joint species distribution models to investigate the combined effect of the regional aridity gradient with the local experimental treatment (drought and warming) over the assembly of springtail communities and tested for significant trait–environment relationships mediating their community‐level responses.Our results show (1) a convergent evolution in all three major collembolan lineages of species adapted to inhabit at different soil strata; (2) a clear signature of aridity selecting traits of more epigeic species at a biogeographical scale and (3) the association of short‐term experimental drought with traits related to more euedaphic life‐forms.The hemiedaphic condition would be the plesiomorphic state for Collembola while the adaptations for an epigeic life would have been secondarily gained. Epigeic springtails are not only more resistant to drought, but also have a higher dispersal capacity that allows them to seek more favourable micro‐habitats after experiencing drier conditions. The observed relative edaphization of the springtail communities after short‐term experimental drought may thus be a transient community response.The disparity between macroecological trends and fast community‐level responses after climate manipulations highlights the need of simultaneously assessing long‐term and short‐term drivers at broad spatial scales to adequately interpret trait–environment relationships and better forecast biodiversity responses to climate change.Read the freePlain Language Summaryfor this article on the Journal blog.
NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Russian Federation, Italy, Russian Federation, Russian FederationPublisher:Elsevier BV Paolo De Angelis; Dario Liberati; Jing Tian; Jing Tian; Marie Spohn; Gabriele Guidolotti; Johanna Pausch; Olga Gavrichkova; Olga Gavrichkova; Enrico Brugnoli; Giovanbattista de Dato; Renée Abou Jaoudé; Yakov Kuzyakov;pmid: 30857089
handle: 20.500.14243/346979 , 2607/32776 , 2607/6758 , 2067/32776
Hydrological cycle is expected to become the primary cause of ecosystem's degradation in near future under changing climate. Rain manipulation experiments under field conditions provide accurate picture on the responses of biotic processes to changed water availability for plants. A field experiment, mimicking expected changes in rain patterns, was established in a Mediterranean shrub community at Porto Conte, Italy, in 2001. In November 2011 Cistus monspeliensis, one of the dominating shrub species in the Mediterranean basin, was 13C labelled on plots subjected to extended rain shortage period and on control non manipulated plots. Carbon (C) allocation was traced by 13C dynamics in shoots, shoot-respired CO2, roots, microbial biomass, K2SO4-extractable C and CO2 respired from soil. Most of the recovered 13C (60%) was respired by shoots within 2weeks in control plots. In rain shortage treatment, 13C remained incorporated in aboveground plant parts. Residence time of 13C in leaves was longer under the rain shortage because less 13C was lost by shoot respiration and because 13C was re-allocated to leaves from woody tissues. The belowground C sink was weak (3-4% of recovered 13C) and independent on rain manipulation. Extended rain shortage promoted C exudation into rhizosphere soil in expense of roots. Together with lowered photosynthesis, this "save" economy of new C metabolites reduces the growing season under rain shortage resulting in decrease of shrub cover and C losses from the system on the long-term.
Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.01.311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.01.311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Hungary, United Kingdom, Netherlands, Denmark, Spain, Italy, HungaryPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-P, EC | INCREASEEC| IMBALANCE-P ,EC| INCREASEKröel-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel; Beier, Claus; De Angelis, Paolo; de Dato, Giovanbattista; Dukes, Jeffrey S.; Emmett, Bridget; Estiarte, Marc; Garadnai, János; Kongstad, Jane; Kovács-Láng, Edit; Larsen, Klaus Steenberg; Liberati, Dario; Ogaya, Romà; Riis-Nielsen, Torben; Smith, Andrew R.; Sowerby, Alwyn; Tietema, Albert; Penuelas, Josep;Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change.
NERC Open Research A... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2015 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTANature CommunicationsArticle . 2015Data sources: Universiteit van Amsterdam Digital Academic RepositoryDiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms7682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2015 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTANature CommunicationsArticle . 2015Data sources: Universiteit van Amsterdam Digital Academic RepositoryDiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms7682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:Wiley Funded by:EC | INCREASEEC| INCREASEAuthors: Dario Liberati; Gabriele Guidolotti; Giovanbattista de Dato; Paolo De Angelis;AbstractNet ecosystem CO2 exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem‐climate feedbacks that can accelerate climate warming. As these dynamics have not been well studied in dry shrublands, we subjected a Mediterranean shrubland to a 10‐year night‐time temperature manipulation experiment that analyzed ecosystem carbon fluxes associated with dominant shrub species, together with several plant parameters related to leaf photosynthesis, leaf morphology, and canopy structure. Under moderate night‐time warming (+0.9°C minimum daily temperature, no significant reduction in soil moisture), Cistus monspeliensis formed shoots with more leaves that were relatively larger and denser canopies that supported higher plant‐level photosynthesis rates. Given that ecosystem respiration was not affected, this change in canopy morphology led to a significant enhancement in net ecosystem exchange (+47% at midday). The observed changes in shoot and canopy morphology were attributed to the improved nutritional state of the warmed plants, primarily due to changes in nitrogen cycling and higher nitrogen resorption efficiency in senescent leaves. Our results show that modifications in plant morphology triggered by moderate warming affected ecosystem CO2 fluxes, providing the first evidence for enhanced daytime carbon uptake in a dry shrubland ecosystem under experimental warming.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2021License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/440749/1/Enhancement%20of%20ecosystem%20carbon.pdfData sources: IRIS CnrUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2021Full-Text: http://hdl.handle.net/2067/47140Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2021License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/440749/1/Enhancement%20of%20ecosystem%20carbon.pdfData sources: IRIS CnrUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2021Full-Text: http://hdl.handle.net/2067/47140Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Netherlands, Spain, United Kingdom, Hungary, Italy, Hungary, Denmark, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | INCREASE, EC | IMBALANCE-PEC| INCREASE ,EC| IMBALANCE-PSabine Reinsch 1; Eva Koller 2; Alwyn Sowerby 1; Giovanbattista de Dato 3; 4; Marc Estiarte 5; 6; Gabriele Guidolotti 7; Edit Kovács-Láng 8; György Kröel-Dulay 8; Eszter Lellei-Kovács 8; Klaus S. Larsen 9; Dario Liberati 4; Josep Peñuelas 5; 6; Johannes Ransijn 9; David A. Robinson 1; Inger K. Schmidt 9; Andrew R. Smith 1; 2; Albert Tietema 10; Jeffrey S. Dukes 11; 12; Claus Beier 9; Bridget A. Emmett 1;AbstractAbove- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8–12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change.
NERC Open Research A... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific ReportsArticle . 2017License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryDiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/srep...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep43952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific ReportsArticle . 2017License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryDiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/srep...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep43952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, Germany, Russian Federation, Russian FederationPublisher:Elsevier BV Olga Gavrichkova; P. De Angelis; Dario Liberati; Enrico Brugnoli; Gabriele Guidolotti; Gabriele Guidolotti; A. Gunina; G. de Dato; Yakov Kuzyakov; Yakov Kuzyakov; Carlo Calfapietra;handle: 20.500.14243/334307
In the Mediterranean basin the effects of climate warming on ecosystem functioning will strongly depend on the warming intensity directly but also on its effects on evapotranspiration and nutrient cycling. Climate manipulation experiments under field conditions are a source of unique empirical evidence regarding climate-related modifications of biotic processes. A field night-time warming experiment, simulating the predicted near-future increase in ambient temperatures (+0.3 up to 1o C), was established in a Mediterranean shrub community located in Porto Conte (Italy) in 2001. After 11 years of continuous treatment, we labeled the dominant shrub Cistus monspeliensis with 13CO2 and studied the dynamics of the label allocation between aboveground and belowground pools and fluxes in warmed and ambient plots within 2 weeks of the chasing period. The interactions between C and N metabolism were assessed by parallel labeling of soil with K15NO3. Most of the assimilated 13C was respired by Cistus shoots (28-51%) within two weeks. Cistus under warming respired more 13C label and tended to allocate less 13C to leaves, branches and roots. The higher C and N content in microbial biomass in warming plots, combined with the higher N content in plant tissues and soil, evidenced a greater N mobilization in soil and a better nutrient status of the plants as compared to the ambient treatment. Acceleration of N cycling is probably responsible for higher respiratory C losses, but combined with the reduction in the number of frost days, should also positively affect plant photosynthetic performance. We conclude that, although Cistus plants are already growing in conditions close to their thermal optimum, long-term warming will positively affect the performance of this species, mainly by reducing the nutrient constraints. This positive effect will highly depend on the frequency and amount of rain events and their interactions with soil N content.
Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Environmental and Experimental BotanyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2017.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Environmental and Experimental BotanyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2017.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 Denmark, United Kingdom, ItalyPublisher:Wiley Funded by:EC | IMBALANCE-PEC| IMBALANCE-PMiquel Ferrín; Laura Márquez; Henning Petersen; Sandrine Salmon; Jean‐François Ponge; Miquel Arnedo; Bridget Emmett; Claus Beier; Inger K. Schmidt; Albert Tietema; Paolo de Angelis; Dario Liberati; Edit Kovács‐Láng; György Kröel‐Dulay; Marc Estiarte; Mireia Bartrons; Josep Peñuelas; Guille Peguero;handle: 2067/47442
AbstractThe capacity to forecast the effects of climate change on biodiversity largely relies on identifying traits capturing mechanistic relationships with the environment through standardized field experiments distributed across relevant spatial scales. The effects of short‐term experimental manipulations on local communities may overlap with regional climate gradients that have been operating during longer time periods. However, to the best of our knowledge, there are no studies simultaneously assessing such long‐term macroecological drivers with local climate manipulations.We analysed this issue with springtails (Class Collembola), one of the dominant soil fauna groups, in a standardized climate manipulation experiment conducted across six European countries encompassing broad climate gradients. We combined community data (near 20K specimens classified into 102 species) with 22 eco‐morphological traits and reconstructed their phylogenetic relationships to track the evolution of adaptations to live at different soil depths, which is key to cope with desiccation. We then applied joint species distribution models to investigate the combined effect of the regional aridity gradient with the local experimental treatment (drought and warming) over the assembly of springtail communities and tested for significant trait–environment relationships mediating their community‐level responses.Our results show (1) a convergent evolution in all three major collembolan lineages of species adapted to inhabit at different soil strata; (2) a clear signature of aridity selecting traits of more epigeic species at a biogeographical scale and (3) the association of short‐term experimental drought with traits related to more euedaphic life‐forms.The hemiedaphic condition would be the plesiomorphic state for Collembola while the adaptations for an epigeic life would have been secondarily gained. Epigeic springtails are not only more resistant to drought, but also have a higher dispersal capacity that allows them to seek more favourable micro‐habitats after experiencing drier conditions. The observed relative edaphization of the springtail communities after short‐term experimental drought may thus be a transient community response.The disparity between macroecological trends and fast community‐level responses after climate manipulations highlights the need of simultaneously assessing long‐term and short‐term drivers at broad spatial scales to adequately interpret trait–environment relationships and better forecast biodiversity responses to climate change.Read the freePlain Language Summaryfor this article on the Journal blog.
NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Russian Federation, Italy, Russian Federation, Russian FederationPublisher:Elsevier BV Paolo De Angelis; Dario Liberati; Jing Tian; Jing Tian; Marie Spohn; Gabriele Guidolotti; Johanna Pausch; Olga Gavrichkova; Olga Gavrichkova; Enrico Brugnoli; Giovanbattista de Dato; Renée Abou Jaoudé; Yakov Kuzyakov;pmid: 30857089
handle: 20.500.14243/346979 , 2607/32776 , 2607/6758 , 2067/32776
Hydrological cycle is expected to become the primary cause of ecosystem's degradation in near future under changing climate. Rain manipulation experiments under field conditions provide accurate picture on the responses of biotic processes to changed water availability for plants. A field experiment, mimicking expected changes in rain patterns, was established in a Mediterranean shrub community at Porto Conte, Italy, in 2001. In November 2011 Cistus monspeliensis, one of the dominating shrub species in the Mediterranean basin, was 13C labelled on plots subjected to extended rain shortage period and on control non manipulated plots. Carbon (C) allocation was traced by 13C dynamics in shoots, shoot-respired CO2, roots, microbial biomass, K2SO4-extractable C and CO2 respired from soil. Most of the recovered 13C (60%) was respired by shoots within 2weeks in control plots. In rain shortage treatment, 13C remained incorporated in aboveground plant parts. Residence time of 13C in leaves was longer under the rain shortage because less 13C was lost by shoot respiration and because 13C was re-allocated to leaves from woody tissues. The belowground C sink was weak (3-4% of recovered 13C) and independent on rain manipulation. Extended rain shortage promoted C exudation into rhizosphere soil in expense of roots. Together with lowered photosynthesis, this "save" economy of new C metabolites reduces the growing season under rain shortage resulting in decrease of shrub cover and C losses from the system on the long-term.
Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.01.311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.01.311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Hungary, United Kingdom, Netherlands, Denmark, Spain, Italy, HungaryPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-P, EC | INCREASEEC| IMBALANCE-P ,EC| INCREASEKröel-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel; Beier, Claus; De Angelis, Paolo; de Dato, Giovanbattista; Dukes, Jeffrey S.; Emmett, Bridget; Estiarte, Marc; Garadnai, János; Kongstad, Jane; Kovács-Láng, Edit; Larsen, Klaus Steenberg; Liberati, Dario; Ogaya, Romà; Riis-Nielsen, Torben; Smith, Andrew R.; Sowerby, Alwyn; Tietema, Albert; Penuelas, Josep;Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change.
NERC Open Research A... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2015 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTANature CommunicationsArticle . 2015Data sources: Universiteit van Amsterdam Digital Academic RepositoryDiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms7682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2015 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTANature CommunicationsArticle . 2015Data sources: Universiteit van Amsterdam Digital Academic RepositoryDiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms7682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:Wiley Funded by:EC | INCREASEEC| INCREASEAuthors: Dario Liberati; Gabriele Guidolotti; Giovanbattista de Dato; Paolo De Angelis;AbstractNet ecosystem CO2 exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem‐climate feedbacks that can accelerate climate warming. As these dynamics have not been well studied in dry shrublands, we subjected a Mediterranean shrubland to a 10‐year night‐time temperature manipulation experiment that analyzed ecosystem carbon fluxes associated with dominant shrub species, together with several plant parameters related to leaf photosynthesis, leaf morphology, and canopy structure. Under moderate night‐time warming (+0.9°C minimum daily temperature, no significant reduction in soil moisture), Cistus monspeliensis formed shoots with more leaves that were relatively larger and denser canopies that supported higher plant‐level photosynthesis rates. Given that ecosystem respiration was not affected, this change in canopy morphology led to a significant enhancement in net ecosystem exchange (+47% at midday). The observed changes in shoot and canopy morphology were attributed to the improved nutritional state of the warmed plants, primarily due to changes in nitrogen cycling and higher nitrogen resorption efficiency in senescent leaves. Our results show that modifications in plant morphology triggered by moderate warming affected ecosystem CO2 fluxes, providing the first evidence for enhanced daytime carbon uptake in a dry shrubland ecosystem under experimental warming.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2021License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/440749/1/Enhancement%20of%20ecosystem%20carbon.pdfData sources: IRIS CnrUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2021Full-Text: http://hdl.handle.net/2067/47140Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2021License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/440749/1/Enhancement%20of%20ecosystem%20carbon.pdfData sources: IRIS CnrUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2021Full-Text: http://hdl.handle.net/2067/47140Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Netherlands, Spain, United Kingdom, Hungary, Italy, Hungary, Denmark, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | INCREASE, EC | IMBALANCE-PEC| INCREASE ,EC| IMBALANCE-PSabine Reinsch 1; Eva Koller 2; Alwyn Sowerby 1; Giovanbattista de Dato 3; 4; Marc Estiarte 5; 6; Gabriele Guidolotti 7; Edit Kovács-Láng 8; György Kröel-Dulay 8; Eszter Lellei-Kovács 8; Klaus S. Larsen 9; Dario Liberati 4; Josep Peñuelas 5; 6; Johannes Ransijn 9; David A. Robinson 1; Inger K. Schmidt 9; Andrew R. Smith 1; 2; Albert Tietema 10; Jeffrey S. Dukes 11; 12; Claus Beier 9; Bridget A. Emmett 1;AbstractAbove- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8–12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change.
NERC Open Research A... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific ReportsArticle . 2017License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryDiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/srep...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep43952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific ReportsArticle . 2017License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryDiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/srep...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep43952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, Germany, Russian Federation, Russian FederationPublisher:Elsevier BV Olga Gavrichkova; P. De Angelis; Dario Liberati; Enrico Brugnoli; Gabriele Guidolotti; Gabriele Guidolotti; A. Gunina; G. de Dato; Yakov Kuzyakov; Yakov Kuzyakov; Carlo Calfapietra;handle: 20.500.14243/334307
In the Mediterranean basin the effects of climate warming on ecosystem functioning will strongly depend on the warming intensity directly but also on its effects on evapotranspiration and nutrient cycling. Climate manipulation experiments under field conditions are a source of unique empirical evidence regarding climate-related modifications of biotic processes. A field night-time warming experiment, simulating the predicted near-future increase in ambient temperatures (+0.3 up to 1o C), was established in a Mediterranean shrub community located in Porto Conte (Italy) in 2001. After 11 years of continuous treatment, we labeled the dominant shrub Cistus monspeliensis with 13CO2 and studied the dynamics of the label allocation between aboveground and belowground pools and fluxes in warmed and ambient plots within 2 weeks of the chasing period. The interactions between C and N metabolism were assessed by parallel labeling of soil with K15NO3. Most of the assimilated 13C was respired by Cistus shoots (28-51%) within two weeks. Cistus under warming respired more 13C label and tended to allocate less 13C to leaves, branches and roots. The higher C and N content in microbial biomass in warming plots, combined with the higher N content in plant tissues and soil, evidenced a greater N mobilization in soil and a better nutrient status of the plants as compared to the ambient treatment. Acceleration of N cycling is probably responsible for higher respiratory C losses, but combined with the reduction in the number of frost days, should also positively affect plant photosynthetic performance. We conclude that, although Cistus plants are already growing in conditions close to their thermal optimum, long-term warming will positively affect the performance of this species, mainly by reducing the nutrient constraints. This positive effect will highly depend on the frequency and amount of rain events and their interactions with soil N content.
Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Environmental and Experimental BotanyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2017.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Environmental and Experimental BotanyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envexpbot.2017.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu