- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Australia, Portugal, United KingdomPublisher:Springer Science and Business Media LLC Daniel Salvador Cicerone; Mansour Edraki; Ricardo Oyarzún Lucero; Pramod Kumar; Trevor Elliot; Roger Beckie; Albert Soler i Gil; Teresa Maria Fernandes Valente; Darrell Kirk Nordstrom; Silvia Cristina Alves França; Christian Wolkersdorfer; Christian Wolkersdorfer; Christian Wolkersdorfer;handle: 1822/73080
AbstractThis paper summarizes international state-of-the-art applications and opportunities for employing and deploying hydrological, geochemical, and isotopic tools in an integrated manner for investigations of mining operations. It is intended to aid formulation of more integrated approaches for evaluating the overall sustainability of mining projects. The focus is particularly on mine waters, including: environmental water sources, mine water dynamics, and as a source and vector for pollution in the wider environment. The guidance is generic to mining projects and not just reflective of a particular extraction (e.g. coal, metalliferous, uranium) industry. A mine life cycle perspective has been adopted to highlight the potential for more integrated investigations at each stage of a mining operation. Three types of mines have been considered: new (i.e. those in the planning stage), active (i.e. working mines), and historical mines (i.e. inactive and abandoned mines). The practical usage of geochemical analyses and isotopic studies described here emphasise characterisation, dynamics, and process understanding for water quality considerations in tandem with water resource and environmental impact implications. Both environmental (i.e. ambient) and applied (i.e. injected) tracers are considered. This guide is written for scientists (including isotope specialists) who have limited or no mine water experience, environmental managers, planners, consultants, and regulators with key interests in planned, active, and legacy mining projects.
Mine Water and the E... arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10230-020-00666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 1 Powered bymore_vert Mine Water and the E... arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10230-020-00666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Australia, Portugal, United KingdomPublisher:Springer Science and Business Media LLC Daniel Salvador Cicerone; Mansour Edraki; Ricardo Oyarzún Lucero; Pramod Kumar; Trevor Elliot; Roger Beckie; Albert Soler i Gil; Teresa Maria Fernandes Valente; Darrell Kirk Nordstrom; Silvia Cristina Alves França; Christian Wolkersdorfer; Christian Wolkersdorfer; Christian Wolkersdorfer;handle: 1822/73080
AbstractThis paper summarizes international state-of-the-art applications and opportunities for employing and deploying hydrological, geochemical, and isotopic tools in an integrated manner for investigations of mining operations. It is intended to aid formulation of more integrated approaches for evaluating the overall sustainability of mining projects. The focus is particularly on mine waters, including: environmental water sources, mine water dynamics, and as a source and vector for pollution in the wider environment. The guidance is generic to mining projects and not just reflective of a particular extraction (e.g. coal, metalliferous, uranium) industry. A mine life cycle perspective has been adopted to highlight the potential for more integrated investigations at each stage of a mining operation. Three types of mines have been considered: new (i.e. those in the planning stage), active (i.e. working mines), and historical mines (i.e. inactive and abandoned mines). The practical usage of geochemical analyses and isotopic studies described here emphasise characterisation, dynamics, and process understanding for water quality considerations in tandem with water resource and environmental impact implications. Both environmental (i.e. ambient) and applied (i.e. injected) tracers are considered. This guide is written for scientists (including isotope specialists) who have limited or no mine water experience, environmental managers, planners, consultants, and regulators with key interests in planned, active, and legacy mining projects.
Mine Water and the E... arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10230-020-00666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 1 Powered bymore_vert Mine Water and the E... arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10230-020-00666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Australia, Portugal, United KingdomPublisher:Springer Science and Business Media LLC Daniel Salvador Cicerone; Mansour Edraki; Ricardo Oyarzún Lucero; Pramod Kumar; Trevor Elliot; Roger Beckie; Albert Soler i Gil; Teresa Maria Fernandes Valente; Darrell Kirk Nordstrom; Silvia Cristina Alves França; Christian Wolkersdorfer; Christian Wolkersdorfer; Christian Wolkersdorfer;handle: 1822/73080
AbstractThis paper summarizes international state-of-the-art applications and opportunities for employing and deploying hydrological, geochemical, and isotopic tools in an integrated manner for investigations of mining operations. It is intended to aid formulation of more integrated approaches for evaluating the overall sustainability of mining projects. The focus is particularly on mine waters, including: environmental water sources, mine water dynamics, and as a source and vector for pollution in the wider environment. The guidance is generic to mining projects and not just reflective of a particular extraction (e.g. coal, metalliferous, uranium) industry. A mine life cycle perspective has been adopted to highlight the potential for more integrated investigations at each stage of a mining operation. Three types of mines have been considered: new (i.e. those in the planning stage), active (i.e. working mines), and historical mines (i.e. inactive and abandoned mines). The practical usage of geochemical analyses and isotopic studies described here emphasise characterisation, dynamics, and process understanding for water quality considerations in tandem with water resource and environmental impact implications. Both environmental (i.e. ambient) and applied (i.e. injected) tracers are considered. This guide is written for scientists (including isotope specialists) who have limited or no mine water experience, environmental managers, planners, consultants, and regulators with key interests in planned, active, and legacy mining projects.
Mine Water and the E... arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10230-020-00666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 1 Powered bymore_vert Mine Water and the E... arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10230-020-00666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Australia, Portugal, United KingdomPublisher:Springer Science and Business Media LLC Daniel Salvador Cicerone; Mansour Edraki; Ricardo Oyarzún Lucero; Pramod Kumar; Trevor Elliot; Roger Beckie; Albert Soler i Gil; Teresa Maria Fernandes Valente; Darrell Kirk Nordstrom; Silvia Cristina Alves França; Christian Wolkersdorfer; Christian Wolkersdorfer; Christian Wolkersdorfer;handle: 1822/73080
AbstractThis paper summarizes international state-of-the-art applications and opportunities for employing and deploying hydrological, geochemical, and isotopic tools in an integrated manner for investigations of mining operations. It is intended to aid formulation of more integrated approaches for evaluating the overall sustainability of mining projects. The focus is particularly on mine waters, including: environmental water sources, mine water dynamics, and as a source and vector for pollution in the wider environment. The guidance is generic to mining projects and not just reflective of a particular extraction (e.g. coal, metalliferous, uranium) industry. A mine life cycle perspective has been adopted to highlight the potential for more integrated investigations at each stage of a mining operation. Three types of mines have been considered: new (i.e. those in the planning stage), active (i.e. working mines), and historical mines (i.e. inactive and abandoned mines). The practical usage of geochemical analyses and isotopic studies described here emphasise characterisation, dynamics, and process understanding for water quality considerations in tandem with water resource and environmental impact implications. Both environmental (i.e. ambient) and applied (i.e. injected) tracers are considered. This guide is written for scientists (including isotope specialists) who have limited or no mine water experience, environmental managers, planners, consultants, and regulators with key interests in planned, active, and legacy mining projects.
Mine Water and the E... arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10230-020-00666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 1 Powered bymore_vert Mine Water and the E... arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10230-020-00666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu