- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, FinlandPublisher:Elsevier BV AlZainati, Nahawand; Yadav, Sudesh; Altaee, Ali; Subbiah, Senthilmurugan; Zaidi, Syed Javaid; Zhou, John; Al-Juboori, Raed A.; Chen, Yingxue; Shaheed; Mohammad Hasan;The Dual Stage Pressure Retarded Osmosis technique is considered for power generation. The influence of feed flow rates, hydraulic pressure, and pressure drop on mass transfer and solute diffusion in a full-scale membrane model was investigated for the first time to maximize power generation. Dead Sea-seawater, Dead Sea-reverse osmosis brine, reverse osmosis brine-wastewater, and seawater-wastewater salinity gradient resources were investigated for power generation. Results revealed a 71.07% increase in the specific power generation due to the dual-stage pressure retarded osmosis process optimization using Dead Sea-seawater salinity gradient resources. The increase in the specific power generation due to the dual-stage pressure retarded osmosis optimization was 108.8%, 63.18%, and 133.54%, respectively, for Dead Sea-reverse osmosis brine, reverse osmosis brine-wastewater, and seawater-wastewater salinity gradient resources. At optimum operating conditions, using the dual-stage pressure retarded osmosis process as an alternative to the single pressure retarded osmosis process achieved up to a 22% increase in the energy output. Interestingly, the hydraulic pressure at optimum operating conditions was slightly higher than the average osmotic pressure gradients in the dual-stage pressure retarded osmosis process. The study also revealed that power generation in the dual-stage pressure retarded osmosis process operating at constant mass transfer and solute resistivity parameters was overestimated by 2.8%.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nexus.2021.100030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nexus.2021.100030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, FinlandPublisher:Elsevier BV AlZainati, Nahawand; Yadav, Sudesh; Altaee, Ali; Subbiah, Senthilmurugan; Zaidi, Syed Javaid; Zhou, John; Al-Juboori, Raed A.; Chen, Yingxue; Shaheed; Mohammad Hasan;The Dual Stage Pressure Retarded Osmosis technique is considered for power generation. The influence of feed flow rates, hydraulic pressure, and pressure drop on mass transfer and solute diffusion in a full-scale membrane model was investigated for the first time to maximize power generation. Dead Sea-seawater, Dead Sea-reverse osmosis brine, reverse osmosis brine-wastewater, and seawater-wastewater salinity gradient resources were investigated for power generation. Results revealed a 71.07% increase in the specific power generation due to the dual-stage pressure retarded osmosis process optimization using Dead Sea-seawater salinity gradient resources. The increase in the specific power generation due to the dual-stage pressure retarded osmosis optimization was 108.8%, 63.18%, and 133.54%, respectively, for Dead Sea-reverse osmosis brine, reverse osmosis brine-wastewater, and seawater-wastewater salinity gradient resources. At optimum operating conditions, using the dual-stage pressure retarded osmosis process as an alternative to the single pressure retarded osmosis process achieved up to a 22% increase in the energy output. Interestingly, the hydraulic pressure at optimum operating conditions was slightly higher than the average osmotic pressure gradients in the dual-stage pressure retarded osmosis process. The study also revealed that power generation in the dual-stage pressure retarded osmosis process operating at constant mass transfer and solute resistivity parameters was overestimated by 2.8%.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nexus.2021.100030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nexus.2021.100030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:MDPI AG Ihsan Hamawand; Anas Ghadouani; Jochen Bundschuh; Sara Hamawand; Raed A. Al Juboori; Sayan Chakrabarty; Talal Yusaf;doi: 10.3390/en10050731
This review article addresses wastewater treatment methods in the red meat processing industry. The focus is on conventional chemicals currently in use for abattoir wastewater treatment and energy related aspects. In addition, this article discusses the use of cleaning and sanitizing agents at the meat processing facilities and their effect on decision making in regard to selecting the treatment methods. This study shows that cleaning chemicals are currently used at a concentration of 2% to 3% which will further be diluted with the bulk wastewater. For example, for an abattoir that produces 3500 m3/day wastewater and uses around 200 L (3%) acid and alkaline chemicals, the final concentration of these chemical will be around 0.00017%. For this reason, the effects of these chemicals on the treatment method and the environment are very limited. Chemical treatment is highly efficient in removing soluble and colloidal particles from the red meat processing industry wastewater. Actually, it is shown that, if chemical treatment has been applied, then biological treatment can only be included for the treatment of the solid waste by-product and/or for production of bioenergy. Chemical treatment is recommended in all cases and especially when the wastewater is required to be reused or released to water streams. This study also shows that energy consumption for chemical treatment units is insignificant while efficient compared to other physical or biological units. A combination of a main (ferric chloride) and an aid coagulant has shown to be efficient and cost-effective in treating abattoir wastewater. The cost of using this combination per cubic meter wastewater treated is 0.055 USD/m3 compared to 0.11 USD/m3 for alum and the amount of sludge produced is 77% less than that produced by alum. In addition, the residues of these chemicals in the wastewater and the sludge have a positive or no impact on biological processes. Energy consumption from a small wastewater treatment plant (WWTP) installed to recycle wastewater for a meet facility can be around $500,000.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10050731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10050731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:MDPI AG Ihsan Hamawand; Anas Ghadouani; Jochen Bundschuh; Sara Hamawand; Raed A. Al Juboori; Sayan Chakrabarty; Talal Yusaf;doi: 10.3390/en10050731
This review article addresses wastewater treatment methods in the red meat processing industry. The focus is on conventional chemicals currently in use for abattoir wastewater treatment and energy related aspects. In addition, this article discusses the use of cleaning and sanitizing agents at the meat processing facilities and their effect on decision making in regard to selecting the treatment methods. This study shows that cleaning chemicals are currently used at a concentration of 2% to 3% which will further be diluted with the bulk wastewater. For example, for an abattoir that produces 3500 m3/day wastewater and uses around 200 L (3%) acid and alkaline chemicals, the final concentration of these chemical will be around 0.00017%. For this reason, the effects of these chemicals on the treatment method and the environment are very limited. Chemical treatment is highly efficient in removing soluble and colloidal particles from the red meat processing industry wastewater. Actually, it is shown that, if chemical treatment has been applied, then biological treatment can only be included for the treatment of the solid waste by-product and/or for production of bioenergy. Chemical treatment is recommended in all cases and especially when the wastewater is required to be reused or released to water streams. This study also shows that energy consumption for chemical treatment units is insignificant while efficient compared to other physical or biological units. A combination of a main (ferric chloride) and an aid coagulant has shown to be efficient and cost-effective in treating abattoir wastewater. The cost of using this combination per cubic meter wastewater treated is 0.055 USD/m3 compared to 0.11 USD/m3 for alum and the amount of sludge produced is 77% less than that produced by alum. In addition, the residues of these chemicals in the wastewater and the sludge have a positive or no impact on biological processes. Energy consumption from a small wastewater treatment plant (WWTP) installed to recycle wastewater for a meet facility can be around $500,000.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10050731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10050731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 AustraliaPublisher:MDPI AG Authors: Al-lwayzy, Saddam H.; Yusaf, Talal; Al-Juboori, Raed A.;doi: 10.3390/en7031829
This work aims to investigate biofuels for diesel engines produced on a lab-scale from the fresh water microalgae Chlorella vulgaris (FWM-CV). The impact of growing conditions on the properties of biodiesel produced from FWM-CV was evaluated. The properties of FWM-CV biodiesel were found to be within the ASTM standards for biodiesel. Due to the limited amount of biodiesel produced on the lab-scale, the biomass of dry cells of FWM-CV was used to yield emulsified water fuel. The preparation of emulsion fuel with and without FWM-CV cells was conducted using ultrasound to overcome the problems of large size microalgae colonies and to form homogenized emulsions. The emulsified water fuels, prepared using ultrasound, were found to be stable and the size of FWM-CV colonies were effectively reduced to pass through the engine nozzle safely. Engine tests at 3670 rpm were conducted using three fuels: cottonseed biodiesel CS-B100, emulsified cottonseed biodiesel water fuel, water and emulsifier (CS-E20) and emulsified water containing FWM-CV cells CS-ME20. The results showed that the brake specific fuel consumption (BSFC) was increased by about 41% when the engine was fueled with emulsified water fuels compared to CS-B100. The engine power, exhaust gas temperature, NOx and CO2 were significantly lower than that produced by CS-B100. The CS-ME20 produced higher power than CS-E20 due to the heating value improvement as a result of adding FWM-CV cells to the fuel.
Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/3/1829/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7031829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/3/1829/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7031829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 AustraliaPublisher:MDPI AG Authors: Al-lwayzy, Saddam H.; Yusaf, Talal; Al-Juboori, Raed A.;doi: 10.3390/en7031829
This work aims to investigate biofuels for diesel engines produced on a lab-scale from the fresh water microalgae Chlorella vulgaris (FWM-CV). The impact of growing conditions on the properties of biodiesel produced from FWM-CV was evaluated. The properties of FWM-CV biodiesel were found to be within the ASTM standards for biodiesel. Due to the limited amount of biodiesel produced on the lab-scale, the biomass of dry cells of FWM-CV was used to yield emulsified water fuel. The preparation of emulsion fuel with and without FWM-CV cells was conducted using ultrasound to overcome the problems of large size microalgae colonies and to form homogenized emulsions. The emulsified water fuels, prepared using ultrasound, were found to be stable and the size of FWM-CV colonies were effectively reduced to pass through the engine nozzle safely. Engine tests at 3670 rpm were conducted using three fuels: cottonseed biodiesel CS-B100, emulsified cottonseed biodiesel water fuel, water and emulsifier (CS-E20) and emulsified water containing FWM-CV cells CS-ME20. The results showed that the brake specific fuel consumption (BSFC) was increased by about 41% when the engine was fueled with emulsified water fuels compared to CS-B100. The engine power, exhaust gas temperature, NOx and CO2 were significantly lower than that produced by CS-B100. The CS-ME20 produced higher power than CS-E20 due to the heating value improvement as a result of adding FWM-CV cells to the fuel.
Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/3/1829/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7031829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/3/1829/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7031829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Saudi Arabia, Netherlands, Italy, Saudi ArabiaPublisher:IOP Publishing Antonio Politano; Raed A Al-Juboori; Sultan Alnajdi; Albraa Alsaati; Athanassia Athanassiou; Maya Bar-Sadan; Ali Naderi Beni; Davide Campi; Anna Cupolillo; Gianluca D’Olimpio; Giuseppe D’Andrea; Humberto Estay; Despina Fragouli; Luigi Gurreri; Noreddine Ghaffour; Jack Gilron; Nidal Hilal; Jessica Occhiuzzi; Mateo Roldan Carvajal; Avner Ronen; Sergio Santoro; Michele Tedesco; Ramato Ashu Tufa; Mathias Ulbricht; David M Warsinger; Dimitrios Xevgenos; Guillermo Zaragoza; Yong-Wei Zhang; Ming Zhou; Efrem Curcio;handle: 20.500.11770/363901 , 11697/231141 , 20.500.11769/641052 , 10754/698131
Abstract Water and energy are two strategic drivers of sustainable development, intimately interlaced and vital for a secure future of humanity. Given that water resources are limited, whereas global population and energy demand are exponentially growing, the competitive balance between these resources, referred to as the water-energy nexus, is receiving renewed focus. The desalination industry alleviates water stress by producing freshwater from saline sources, such as seawater, brackish or groundwater. Since the last decade, the market has been dominated by membrane desalination technology, offering significant advantages over thermal processes, such as lower energy demand, easy process control and scale-up, modularity for flexible productivity, and feasibility of synergic integration of different membrane operations. Although seawater reverse osmosis (SWRO) accounts for more than 70% of the global desalination capacity, it is circumscribed by some significant technological limitations, such as: (i) the relatively low water recovery factor (around 50%) due to the negative impact of osmotic and polarization phenomena; (ii) an energy consumption in the range of 3–5 kWh m−3, still far from the theoretical energy demand (1.1 kWh m−3) to produce potable water from seawater (at 50% water recovery factor). Ultimately, desalination is an energy intensive practice and research efforts are oriented toward the development of alternative and more energy-efficient approaches in order to enhance freshwater resources without placing excessive strain on limited energy supplies. Recent years have seen a relevant surge of interest in membrane distillation (MD), a thermally driven membrane desalination technology having the potential to complement SWRO in the logic of Process Intensification and Zero Liquid Discharge paradigm. Due to its peculiar transport mechanism and negligibility of osmotic phenomena, MD allows high-quality distillate production (theoretically, non-volatile species are completely rejected) with a recovery factor of up to 80% at a relatively low operative temperature (typically 60 °C–80 °C). Although low operative temperatures make MD technology attractive for renewable power applications (e.g. solar thermal, wind or geothermal energy sources) or for efficient exploitation of low-grade or waste heat streams, the low energy efficiency intrinsically due to heat losses—and specifically to temperature polarization—has so far hindered the application at industrial scale. Nowadays, photothermal materials able to absorb and convert natural or artificial irradiation into heat have gained great attention, demonstrating the potential to mitigate the ‘anthropic’ energy input to MD and to mitigate the impact of thermal inefficiencies. On this road, a step-change improvement in light-to-heat conversion is expected through high-throughput computational screening over thermoplasmonic materials based on electronic and optical properties of advanced materials including novel topological phases of matter used as nanofillers in polymeric membranes. Coherently with the concept of Circular Economy, waste hypersaline solutions rejected from desalination process (referred as ‘brine’) are now the subject of valorization activities along two main exploitation routes: (1) recovery of valuable minor and trace metals and minerals, with special focus on critical raw materials (including, among others, Mg, Na, Ca, K, Sr, Li, Br, B, and Rb); (2) production of salinity gradient power (SGP) renewable energy resulting from the recovery of the Gibbs energy of mixing (mainly represented by the entropic contribution) of two solutions having different ionic concentration. The exciting new frontier of sustainable mining of seawater concentrates is accelerating the appearance of a plethora of innovative membrane materials and methods for brine dehydration and selective extraction of trace ions, although under the sword of Damocles represented by cost feasibility for reliable commercial application. On the other hand, among several emerging technologies, reverse electrodialysis (SGP-RED) was already proven capable—at least at the kW scale–of turning the chemical potential difference between river water, brackish water, and seawater into electrical energy. Efforts to develop a next generation of ion exchange membranes exhibiting high perm-selectivity (especially toward monovalent ions) and low electrical resistance, to improve system engineering and to optimize operational conditions, pursue the goal of enhancing the low power density so far achievable (in the order of a few W per m2). This Roadmap takes the form of a series of short contributions written independently by worldwide experts in the topic. Collectively, such contributions provide a comprehensive picture of the current state of the art in membrane science and technology at the water-energy nexus, and how it is expected to develop in the future. In addition, this Roadmap acknowledges the challenges and advances in membrane systems, particularly emphasizing the interplay of material innovation and system optimization, which collectively contribute to advancing the desalination field within the water-energy nexus framework.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BYIRIS - Università degli Studi di CataniaArticle . 2024License: CC BYData sources: IRIS - Università degli Studi di CataniaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2024Data sources: Archivio Istituzionale dell'Università della CalabriaDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad2cf2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BYIRIS - Università degli Studi di CataniaArticle . 2024License: CC BYData sources: IRIS - Università degli Studi di CataniaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2024Data sources: Archivio Istituzionale dell'Università della CalabriaDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad2cf2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Saudi Arabia, Netherlands, Italy, Saudi ArabiaPublisher:IOP Publishing Antonio Politano; Raed A Al-Juboori; Sultan Alnajdi; Albraa Alsaati; Athanassia Athanassiou; Maya Bar-Sadan; Ali Naderi Beni; Davide Campi; Anna Cupolillo; Gianluca D’Olimpio; Giuseppe D’Andrea; Humberto Estay; Despina Fragouli; Luigi Gurreri; Noreddine Ghaffour; Jack Gilron; Nidal Hilal; Jessica Occhiuzzi; Mateo Roldan Carvajal; Avner Ronen; Sergio Santoro; Michele Tedesco; Ramato Ashu Tufa; Mathias Ulbricht; David M Warsinger; Dimitrios Xevgenos; Guillermo Zaragoza; Yong-Wei Zhang; Ming Zhou; Efrem Curcio;handle: 20.500.11770/363901 , 11697/231141 , 20.500.11769/641052 , 10754/698131
Abstract Water and energy are two strategic drivers of sustainable development, intimately interlaced and vital for a secure future of humanity. Given that water resources are limited, whereas global population and energy demand are exponentially growing, the competitive balance between these resources, referred to as the water-energy nexus, is receiving renewed focus. The desalination industry alleviates water stress by producing freshwater from saline sources, such as seawater, brackish or groundwater. Since the last decade, the market has been dominated by membrane desalination technology, offering significant advantages over thermal processes, such as lower energy demand, easy process control and scale-up, modularity for flexible productivity, and feasibility of synergic integration of different membrane operations. Although seawater reverse osmosis (SWRO) accounts for more than 70% of the global desalination capacity, it is circumscribed by some significant technological limitations, such as: (i) the relatively low water recovery factor (around 50%) due to the negative impact of osmotic and polarization phenomena; (ii) an energy consumption in the range of 3–5 kWh m−3, still far from the theoretical energy demand (1.1 kWh m−3) to produce potable water from seawater (at 50% water recovery factor). Ultimately, desalination is an energy intensive practice and research efforts are oriented toward the development of alternative and more energy-efficient approaches in order to enhance freshwater resources without placing excessive strain on limited energy supplies. Recent years have seen a relevant surge of interest in membrane distillation (MD), a thermally driven membrane desalination technology having the potential to complement SWRO in the logic of Process Intensification and Zero Liquid Discharge paradigm. Due to its peculiar transport mechanism and negligibility of osmotic phenomena, MD allows high-quality distillate production (theoretically, non-volatile species are completely rejected) with a recovery factor of up to 80% at a relatively low operative temperature (typically 60 °C–80 °C). Although low operative temperatures make MD technology attractive for renewable power applications (e.g. solar thermal, wind or geothermal energy sources) or for efficient exploitation of low-grade or waste heat streams, the low energy efficiency intrinsically due to heat losses—and specifically to temperature polarization—has so far hindered the application at industrial scale. Nowadays, photothermal materials able to absorb and convert natural or artificial irradiation into heat have gained great attention, demonstrating the potential to mitigate the ‘anthropic’ energy input to MD and to mitigate the impact of thermal inefficiencies. On this road, a step-change improvement in light-to-heat conversion is expected through high-throughput computational screening over thermoplasmonic materials based on electronic and optical properties of advanced materials including novel topological phases of matter used as nanofillers in polymeric membranes. Coherently with the concept of Circular Economy, waste hypersaline solutions rejected from desalination process (referred as ‘brine’) are now the subject of valorization activities along two main exploitation routes: (1) recovery of valuable minor and trace metals and minerals, with special focus on critical raw materials (including, among others, Mg, Na, Ca, K, Sr, Li, Br, B, and Rb); (2) production of salinity gradient power (SGP) renewable energy resulting from the recovery of the Gibbs energy of mixing (mainly represented by the entropic contribution) of two solutions having different ionic concentration. The exciting new frontier of sustainable mining of seawater concentrates is accelerating the appearance of a plethora of innovative membrane materials and methods for brine dehydration and selective extraction of trace ions, although under the sword of Damocles represented by cost feasibility for reliable commercial application. On the other hand, among several emerging technologies, reverse electrodialysis (SGP-RED) was already proven capable—at least at the kW scale–of turning the chemical potential difference between river water, brackish water, and seawater into electrical energy. Efforts to develop a next generation of ion exchange membranes exhibiting high perm-selectivity (especially toward monovalent ions) and low electrical resistance, to improve system engineering and to optimize operational conditions, pursue the goal of enhancing the low power density so far achievable (in the order of a few W per m2). This Roadmap takes the form of a series of short contributions written independently by worldwide experts in the topic. Collectively, such contributions provide a comprehensive picture of the current state of the art in membrane science and technology at the water-energy nexus, and how it is expected to develop in the future. In addition, this Roadmap acknowledges the challenges and advances in membrane systems, particularly emphasizing the interplay of material innovation and system optimization, which collectively contribute to advancing the desalination field within the water-energy nexus framework.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BYIRIS - Università degli Studi di CataniaArticle . 2024License: CC BYData sources: IRIS - Università degli Studi di CataniaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2024Data sources: Archivio Istituzionale dell'Università della CalabriaDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad2cf2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BYIRIS - Università degli Studi di CataniaArticle . 2024License: CC BYData sources: IRIS - Università degli Studi di CataniaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2024Data sources: Archivio Istituzionale dell'Università della CalabriaDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad2cf2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Authors: Raed A. Al-Juboori; Raed A. Al-Juboori; Talal Yusaf;This paper reviews various non-conventional techniques for microorganism disruption. Microorganism disruption plays a pivotal role in various agricultural applications such as disinfection of irrigation water, processing of crops and livestock products and the newly emerging area of bioenergy production for agricultural uses. Methods of treatment to destroy microorganisms for the purposes of disinfection or extraction of bio-products can be generally categorized as either thermal treatment methods or non-thermal treatment methods. The thermal methods for microbial disruption are not favorable in many applications such as food processing and water treatment due to its negative impact on product quality and process performance. The discussion of thermal methods for microorganism disruption will not be included in this review. Non-thermal treatments are divided into two groups; chemical and physical treatments. Owing to the concerns of the health organisations with regards to the use of chemical methods for microorganism disruption, the recent research efforts have been directed towards exploring alternative physical methods for rupturing microorganisms. The common alternative physical methods for microorganism disruption include mechanical and non-mechanical treatments. This paper discusses in details the use of the common mechanical treatments for cell disintegration. Such methods include ultrasound, shock wave, High Pressure Homogenization (HPH), Hydrodynamic Cavitation (HC), shear stress, bead milling and micro-fluidizer. The application of the non-mechanical methods for microbial disruption such as electrical treatment, non-thermal plasma, Ultra-Violet (UV), non-conventional chemical methods and some other treatments are also briefly addressed in this paper. Due to the importance of the mechanical methods in the current cell disruption research, more attention is directed to these methods in this work.
Applied Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Authors: Raed A. Al-Juboori; Raed A. Al-Juboori; Talal Yusaf;This paper reviews various non-conventional techniques for microorganism disruption. Microorganism disruption plays a pivotal role in various agricultural applications such as disinfection of irrigation water, processing of crops and livestock products and the newly emerging area of bioenergy production for agricultural uses. Methods of treatment to destroy microorganisms for the purposes of disinfection or extraction of bio-products can be generally categorized as either thermal treatment methods or non-thermal treatment methods. The thermal methods for microbial disruption are not favorable in many applications such as food processing and water treatment due to its negative impact on product quality and process performance. The discussion of thermal methods for microorganism disruption will not be included in this review. Non-thermal treatments are divided into two groups; chemical and physical treatments. Owing to the concerns of the health organisations with regards to the use of chemical methods for microorganism disruption, the recent research efforts have been directed towards exploring alternative physical methods for rupturing microorganisms. The common alternative physical methods for microorganism disruption include mechanical and non-mechanical treatments. This paper discusses in details the use of the common mechanical treatments for cell disintegration. Such methods include ultrasound, shock wave, High Pressure Homogenization (HPH), Hydrodynamic Cavitation (HC), shear stress, bead milling and micro-fluidizer. The application of the non-mechanical methods for microbial disruption such as electrical treatment, non-thermal plasma, Ultra-Violet (UV), non-conventional chemical methods and some other treatments are also briefly addressed in this paper. Due to the importance of the mechanical methods in the current cell disruption research, more attention is directed to these methods in this work.
Applied Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, Germany, FinlandPublisher:Elsevier BV al-Shaeli, Muayad; Al-Juboori, Raed A.; Al Aani, Saif; Ladewig, Bradley P.; Hilal, Nidal;pmid: 35584751
Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, Germany, FinlandPublisher:Elsevier BV al-Shaeli, Muayad; Al-Juboori, Raed A.; Al Aani, Saif; Ladewig, Bradley P.; Hilal, Nidal;pmid: 35584751
Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Talal Yusaf; Leslie Bowtell; Raed A. Al-Juboori;AbstractEnergy characterization of a pulsed ultrasonic system was carried out using a modified calorimetric method. Sonochemical efficiency (SE) for the oxidation of Fe+2 and the formation of H2O2 was determined for selected on:off ratios (R) and different power levels. The measured efficiency of the pulsed ultrasonic system of 60-70% in converting electrical energy into calorimetric energy was found to be constant for all Rratios and equivalent to that for continuous operation. SE of Fe+2 and H2O2 for pulsed ultrasound was higher than that of continuous ultrasound. The ratio R=0.2:0.1 had the highest SE values overall, while for long off-timeratios,R=0.1:0.6 recorded the highest value of SE. These results were supported by the production rates results for Fe+2 and H2O2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Talal Yusaf; Leslie Bowtell; Raed A. Al-Juboori;AbstractEnergy characterization of a pulsed ultrasonic system was carried out using a modified calorimetric method. Sonochemical efficiency (SE) for the oxidation of Fe+2 and the formation of H2O2 was determined for selected on:off ratios (R) and different power levels. The measured efficiency of the pulsed ultrasonic system of 60-70% in converting electrical energy into calorimetric energy was found to be constant for all Rratios and equivalent to that for continuous operation. SE of Fe+2 and H2O2 for pulsed ultrasound was higher than that of continuous ultrasound. The ratio R=0.2:0.1 had the highest SE values overall, while for long off-timeratios,R=0.1:0.6 recorded the highest value of SE. These results were supported by the production rates results for Fe+2 and H2O2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, FinlandPublisher:Elsevier BV AlZainati, Nahawand; Yadav, Sudesh; Altaee, Ali; Subbiah, Senthilmurugan; Zaidi, Syed Javaid; Zhou, John; Al-Juboori, Raed A.; Chen, Yingxue; Shaheed; Mohammad Hasan;The Dual Stage Pressure Retarded Osmosis technique is considered for power generation. The influence of feed flow rates, hydraulic pressure, and pressure drop on mass transfer and solute diffusion in a full-scale membrane model was investigated for the first time to maximize power generation. Dead Sea-seawater, Dead Sea-reverse osmosis brine, reverse osmosis brine-wastewater, and seawater-wastewater salinity gradient resources were investigated for power generation. Results revealed a 71.07% increase in the specific power generation due to the dual-stage pressure retarded osmosis process optimization using Dead Sea-seawater salinity gradient resources. The increase in the specific power generation due to the dual-stage pressure retarded osmosis optimization was 108.8%, 63.18%, and 133.54%, respectively, for Dead Sea-reverse osmosis brine, reverse osmosis brine-wastewater, and seawater-wastewater salinity gradient resources. At optimum operating conditions, using the dual-stage pressure retarded osmosis process as an alternative to the single pressure retarded osmosis process achieved up to a 22% increase in the energy output. Interestingly, the hydraulic pressure at optimum operating conditions was slightly higher than the average osmotic pressure gradients in the dual-stage pressure retarded osmosis process. The study also revealed that power generation in the dual-stage pressure retarded osmosis process operating at constant mass transfer and solute resistivity parameters was overestimated by 2.8%.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nexus.2021.100030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nexus.2021.100030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, FinlandPublisher:Elsevier BV AlZainati, Nahawand; Yadav, Sudesh; Altaee, Ali; Subbiah, Senthilmurugan; Zaidi, Syed Javaid; Zhou, John; Al-Juboori, Raed A.; Chen, Yingxue; Shaheed; Mohammad Hasan;The Dual Stage Pressure Retarded Osmosis technique is considered for power generation. The influence of feed flow rates, hydraulic pressure, and pressure drop on mass transfer and solute diffusion in a full-scale membrane model was investigated for the first time to maximize power generation. Dead Sea-seawater, Dead Sea-reverse osmosis brine, reverse osmosis brine-wastewater, and seawater-wastewater salinity gradient resources were investigated for power generation. Results revealed a 71.07% increase in the specific power generation due to the dual-stage pressure retarded osmosis process optimization using Dead Sea-seawater salinity gradient resources. The increase in the specific power generation due to the dual-stage pressure retarded osmosis optimization was 108.8%, 63.18%, and 133.54%, respectively, for Dead Sea-reverse osmosis brine, reverse osmosis brine-wastewater, and seawater-wastewater salinity gradient resources. At optimum operating conditions, using the dual-stage pressure retarded osmosis process as an alternative to the single pressure retarded osmosis process achieved up to a 22% increase in the energy output. Interestingly, the hydraulic pressure at optimum operating conditions was slightly higher than the average osmotic pressure gradients in the dual-stage pressure retarded osmosis process. The study also revealed that power generation in the dual-stage pressure retarded osmosis process operating at constant mass transfer and solute resistivity parameters was overestimated by 2.8%.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nexus.2021.100030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nexus.2021.100030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:MDPI AG Ihsan Hamawand; Anas Ghadouani; Jochen Bundschuh; Sara Hamawand; Raed A. Al Juboori; Sayan Chakrabarty; Talal Yusaf;doi: 10.3390/en10050731
This review article addresses wastewater treatment methods in the red meat processing industry. The focus is on conventional chemicals currently in use for abattoir wastewater treatment and energy related aspects. In addition, this article discusses the use of cleaning and sanitizing agents at the meat processing facilities and their effect on decision making in regard to selecting the treatment methods. This study shows that cleaning chemicals are currently used at a concentration of 2% to 3% which will further be diluted with the bulk wastewater. For example, for an abattoir that produces 3500 m3/day wastewater and uses around 200 L (3%) acid and alkaline chemicals, the final concentration of these chemical will be around 0.00017%. For this reason, the effects of these chemicals on the treatment method and the environment are very limited. Chemical treatment is highly efficient in removing soluble and colloidal particles from the red meat processing industry wastewater. Actually, it is shown that, if chemical treatment has been applied, then biological treatment can only be included for the treatment of the solid waste by-product and/or for production of bioenergy. Chemical treatment is recommended in all cases and especially when the wastewater is required to be reused or released to water streams. This study also shows that energy consumption for chemical treatment units is insignificant while efficient compared to other physical or biological units. A combination of a main (ferric chloride) and an aid coagulant has shown to be efficient and cost-effective in treating abattoir wastewater. The cost of using this combination per cubic meter wastewater treated is 0.055 USD/m3 compared to 0.11 USD/m3 for alum and the amount of sludge produced is 77% less than that produced by alum. In addition, the residues of these chemicals in the wastewater and the sludge have a positive or no impact on biological processes. Energy consumption from a small wastewater treatment plant (WWTP) installed to recycle wastewater for a meet facility can be around $500,000.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10050731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10050731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:MDPI AG Ihsan Hamawand; Anas Ghadouani; Jochen Bundschuh; Sara Hamawand; Raed A. Al Juboori; Sayan Chakrabarty; Talal Yusaf;doi: 10.3390/en10050731
This review article addresses wastewater treatment methods in the red meat processing industry. The focus is on conventional chemicals currently in use for abattoir wastewater treatment and energy related aspects. In addition, this article discusses the use of cleaning and sanitizing agents at the meat processing facilities and their effect on decision making in regard to selecting the treatment methods. This study shows that cleaning chemicals are currently used at a concentration of 2% to 3% which will further be diluted with the bulk wastewater. For example, for an abattoir that produces 3500 m3/day wastewater and uses around 200 L (3%) acid and alkaline chemicals, the final concentration of these chemical will be around 0.00017%. For this reason, the effects of these chemicals on the treatment method and the environment are very limited. Chemical treatment is highly efficient in removing soluble and colloidal particles from the red meat processing industry wastewater. Actually, it is shown that, if chemical treatment has been applied, then biological treatment can only be included for the treatment of the solid waste by-product and/or for production of bioenergy. Chemical treatment is recommended in all cases and especially when the wastewater is required to be reused or released to water streams. This study also shows that energy consumption for chemical treatment units is insignificant while efficient compared to other physical or biological units. A combination of a main (ferric chloride) and an aid coagulant has shown to be efficient and cost-effective in treating abattoir wastewater. The cost of using this combination per cubic meter wastewater treated is 0.055 USD/m3 compared to 0.11 USD/m3 for alum and the amount of sludge produced is 77% less than that produced by alum. In addition, the residues of these chemicals in the wastewater and the sludge have a positive or no impact on biological processes. Energy consumption from a small wastewater treatment plant (WWTP) installed to recycle wastewater for a meet facility can be around $500,000.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10050731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10050731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 AustraliaPublisher:MDPI AG Authors: Al-lwayzy, Saddam H.; Yusaf, Talal; Al-Juboori, Raed A.;doi: 10.3390/en7031829
This work aims to investigate biofuels for diesel engines produced on a lab-scale from the fresh water microalgae Chlorella vulgaris (FWM-CV). The impact of growing conditions on the properties of biodiesel produced from FWM-CV was evaluated. The properties of FWM-CV biodiesel were found to be within the ASTM standards for biodiesel. Due to the limited amount of biodiesel produced on the lab-scale, the biomass of dry cells of FWM-CV was used to yield emulsified water fuel. The preparation of emulsion fuel with and without FWM-CV cells was conducted using ultrasound to overcome the problems of large size microalgae colonies and to form homogenized emulsions. The emulsified water fuels, prepared using ultrasound, were found to be stable and the size of FWM-CV colonies were effectively reduced to pass through the engine nozzle safely. Engine tests at 3670 rpm were conducted using three fuels: cottonseed biodiesel CS-B100, emulsified cottonseed biodiesel water fuel, water and emulsifier (CS-E20) and emulsified water containing FWM-CV cells CS-ME20. The results showed that the brake specific fuel consumption (BSFC) was increased by about 41% when the engine was fueled with emulsified water fuels compared to CS-B100. The engine power, exhaust gas temperature, NOx and CO2 were significantly lower than that produced by CS-B100. The CS-ME20 produced higher power than CS-E20 due to the heating value improvement as a result of adding FWM-CV cells to the fuel.
Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/3/1829/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7031829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/3/1829/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7031829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 AustraliaPublisher:MDPI AG Authors: Al-lwayzy, Saddam H.; Yusaf, Talal; Al-Juboori, Raed A.;doi: 10.3390/en7031829
This work aims to investigate biofuels for diesel engines produced on a lab-scale from the fresh water microalgae Chlorella vulgaris (FWM-CV). The impact of growing conditions on the properties of biodiesel produced from FWM-CV was evaluated. The properties of FWM-CV biodiesel were found to be within the ASTM standards for biodiesel. Due to the limited amount of biodiesel produced on the lab-scale, the biomass of dry cells of FWM-CV was used to yield emulsified water fuel. The preparation of emulsion fuel with and without FWM-CV cells was conducted using ultrasound to overcome the problems of large size microalgae colonies and to form homogenized emulsions. The emulsified water fuels, prepared using ultrasound, were found to be stable and the size of FWM-CV colonies were effectively reduced to pass through the engine nozzle safely. Engine tests at 3670 rpm were conducted using three fuels: cottonseed biodiesel CS-B100, emulsified cottonseed biodiesel water fuel, water and emulsifier (CS-E20) and emulsified water containing FWM-CV cells CS-ME20. The results showed that the brake specific fuel consumption (BSFC) was increased by about 41% when the engine was fueled with emulsified water fuels compared to CS-B100. The engine power, exhaust gas temperature, NOx and CO2 were significantly lower than that produced by CS-B100. The CS-ME20 produced higher power than CS-E20 due to the heating value improvement as a result of adding FWM-CV cells to the fuel.
Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/3/1829/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7031829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/3/1829/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7031829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Saudi Arabia, Netherlands, Italy, Saudi ArabiaPublisher:IOP Publishing Antonio Politano; Raed A Al-Juboori; Sultan Alnajdi; Albraa Alsaati; Athanassia Athanassiou; Maya Bar-Sadan; Ali Naderi Beni; Davide Campi; Anna Cupolillo; Gianluca D’Olimpio; Giuseppe D’Andrea; Humberto Estay; Despina Fragouli; Luigi Gurreri; Noreddine Ghaffour; Jack Gilron; Nidal Hilal; Jessica Occhiuzzi; Mateo Roldan Carvajal; Avner Ronen; Sergio Santoro; Michele Tedesco; Ramato Ashu Tufa; Mathias Ulbricht; David M Warsinger; Dimitrios Xevgenos; Guillermo Zaragoza; Yong-Wei Zhang; Ming Zhou; Efrem Curcio;handle: 20.500.11770/363901 , 11697/231141 , 20.500.11769/641052 , 10754/698131
Abstract Water and energy are two strategic drivers of sustainable development, intimately interlaced and vital for a secure future of humanity. Given that water resources are limited, whereas global population and energy demand are exponentially growing, the competitive balance between these resources, referred to as the water-energy nexus, is receiving renewed focus. The desalination industry alleviates water stress by producing freshwater from saline sources, such as seawater, brackish or groundwater. Since the last decade, the market has been dominated by membrane desalination technology, offering significant advantages over thermal processes, such as lower energy demand, easy process control and scale-up, modularity for flexible productivity, and feasibility of synergic integration of different membrane operations. Although seawater reverse osmosis (SWRO) accounts for more than 70% of the global desalination capacity, it is circumscribed by some significant technological limitations, such as: (i) the relatively low water recovery factor (around 50%) due to the negative impact of osmotic and polarization phenomena; (ii) an energy consumption in the range of 3–5 kWh m−3, still far from the theoretical energy demand (1.1 kWh m−3) to produce potable water from seawater (at 50% water recovery factor). Ultimately, desalination is an energy intensive practice and research efforts are oriented toward the development of alternative and more energy-efficient approaches in order to enhance freshwater resources without placing excessive strain on limited energy supplies. Recent years have seen a relevant surge of interest in membrane distillation (MD), a thermally driven membrane desalination technology having the potential to complement SWRO in the logic of Process Intensification and Zero Liquid Discharge paradigm. Due to its peculiar transport mechanism and negligibility of osmotic phenomena, MD allows high-quality distillate production (theoretically, non-volatile species are completely rejected) with a recovery factor of up to 80% at a relatively low operative temperature (typically 60 °C–80 °C). Although low operative temperatures make MD technology attractive for renewable power applications (e.g. solar thermal, wind or geothermal energy sources) or for efficient exploitation of low-grade or waste heat streams, the low energy efficiency intrinsically due to heat losses—and specifically to temperature polarization—has so far hindered the application at industrial scale. Nowadays, photothermal materials able to absorb and convert natural or artificial irradiation into heat have gained great attention, demonstrating the potential to mitigate the ‘anthropic’ energy input to MD and to mitigate the impact of thermal inefficiencies. On this road, a step-change improvement in light-to-heat conversion is expected through high-throughput computational screening over thermoplasmonic materials based on electronic and optical properties of advanced materials including novel topological phases of matter used as nanofillers in polymeric membranes. Coherently with the concept of Circular Economy, waste hypersaline solutions rejected from desalination process (referred as ‘brine’) are now the subject of valorization activities along two main exploitation routes: (1) recovery of valuable minor and trace metals and minerals, with special focus on critical raw materials (including, among others, Mg, Na, Ca, K, Sr, Li, Br, B, and Rb); (2) production of salinity gradient power (SGP) renewable energy resulting from the recovery of the Gibbs energy of mixing (mainly represented by the entropic contribution) of two solutions having different ionic concentration. The exciting new frontier of sustainable mining of seawater concentrates is accelerating the appearance of a plethora of innovative membrane materials and methods for brine dehydration and selective extraction of trace ions, although under the sword of Damocles represented by cost feasibility for reliable commercial application. On the other hand, among several emerging technologies, reverse electrodialysis (SGP-RED) was already proven capable—at least at the kW scale–of turning the chemical potential difference between river water, brackish water, and seawater into electrical energy. Efforts to develop a next generation of ion exchange membranes exhibiting high perm-selectivity (especially toward monovalent ions) and low electrical resistance, to improve system engineering and to optimize operational conditions, pursue the goal of enhancing the low power density so far achievable (in the order of a few W per m2). This Roadmap takes the form of a series of short contributions written independently by worldwide experts in the topic. Collectively, such contributions provide a comprehensive picture of the current state of the art in membrane science and technology at the water-energy nexus, and how it is expected to develop in the future. In addition, this Roadmap acknowledges the challenges and advances in membrane systems, particularly emphasizing the interplay of material innovation and system optimization, which collectively contribute to advancing the desalination field within the water-energy nexus framework.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BYIRIS - Università degli Studi di CataniaArticle . 2024License: CC BYData sources: IRIS - Università degli Studi di CataniaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2024Data sources: Archivio Istituzionale dell'Università della CalabriaDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad2cf2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BYIRIS - Università degli Studi di CataniaArticle . 2024License: CC BYData sources: IRIS - Università degli Studi di CataniaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2024Data sources: Archivio Istituzionale dell'Università della CalabriaDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad2cf2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Saudi Arabia, Netherlands, Italy, Saudi ArabiaPublisher:IOP Publishing Antonio Politano; Raed A Al-Juboori; Sultan Alnajdi; Albraa Alsaati; Athanassia Athanassiou; Maya Bar-Sadan; Ali Naderi Beni; Davide Campi; Anna Cupolillo; Gianluca D’Olimpio; Giuseppe D’Andrea; Humberto Estay; Despina Fragouli; Luigi Gurreri; Noreddine Ghaffour; Jack Gilron; Nidal Hilal; Jessica Occhiuzzi; Mateo Roldan Carvajal; Avner Ronen; Sergio Santoro; Michele Tedesco; Ramato Ashu Tufa; Mathias Ulbricht; David M Warsinger; Dimitrios Xevgenos; Guillermo Zaragoza; Yong-Wei Zhang; Ming Zhou; Efrem Curcio;handle: 20.500.11770/363901 , 11697/231141 , 20.500.11769/641052 , 10754/698131
Abstract Water and energy are two strategic drivers of sustainable development, intimately interlaced and vital for a secure future of humanity. Given that water resources are limited, whereas global population and energy demand are exponentially growing, the competitive balance between these resources, referred to as the water-energy nexus, is receiving renewed focus. The desalination industry alleviates water stress by producing freshwater from saline sources, such as seawater, brackish or groundwater. Since the last decade, the market has been dominated by membrane desalination technology, offering significant advantages over thermal processes, such as lower energy demand, easy process control and scale-up, modularity for flexible productivity, and feasibility of synergic integration of different membrane operations. Although seawater reverse osmosis (SWRO) accounts for more than 70% of the global desalination capacity, it is circumscribed by some significant technological limitations, such as: (i) the relatively low water recovery factor (around 50%) due to the negative impact of osmotic and polarization phenomena; (ii) an energy consumption in the range of 3–5 kWh m−3, still far from the theoretical energy demand (1.1 kWh m−3) to produce potable water from seawater (at 50% water recovery factor). Ultimately, desalination is an energy intensive practice and research efforts are oriented toward the development of alternative and more energy-efficient approaches in order to enhance freshwater resources without placing excessive strain on limited energy supplies. Recent years have seen a relevant surge of interest in membrane distillation (MD), a thermally driven membrane desalination technology having the potential to complement SWRO in the logic of Process Intensification and Zero Liquid Discharge paradigm. Due to its peculiar transport mechanism and negligibility of osmotic phenomena, MD allows high-quality distillate production (theoretically, non-volatile species are completely rejected) with a recovery factor of up to 80% at a relatively low operative temperature (typically 60 °C–80 °C). Although low operative temperatures make MD technology attractive for renewable power applications (e.g. solar thermal, wind or geothermal energy sources) or for efficient exploitation of low-grade or waste heat streams, the low energy efficiency intrinsically due to heat losses—and specifically to temperature polarization—has so far hindered the application at industrial scale. Nowadays, photothermal materials able to absorb and convert natural or artificial irradiation into heat have gained great attention, demonstrating the potential to mitigate the ‘anthropic’ energy input to MD and to mitigate the impact of thermal inefficiencies. On this road, a step-change improvement in light-to-heat conversion is expected through high-throughput computational screening over thermoplasmonic materials based on electronic and optical properties of advanced materials including novel topological phases of matter used as nanofillers in polymeric membranes. Coherently with the concept of Circular Economy, waste hypersaline solutions rejected from desalination process (referred as ‘brine’) are now the subject of valorization activities along two main exploitation routes: (1) recovery of valuable minor and trace metals and minerals, with special focus on critical raw materials (including, among others, Mg, Na, Ca, K, Sr, Li, Br, B, and Rb); (2) production of salinity gradient power (SGP) renewable energy resulting from the recovery of the Gibbs energy of mixing (mainly represented by the entropic contribution) of two solutions having different ionic concentration. The exciting new frontier of sustainable mining of seawater concentrates is accelerating the appearance of a plethora of innovative membrane materials and methods for brine dehydration and selective extraction of trace ions, although under the sword of Damocles represented by cost feasibility for reliable commercial application. On the other hand, among several emerging technologies, reverse electrodialysis (SGP-RED) was already proven capable—at least at the kW scale–of turning the chemical potential difference between river water, brackish water, and seawater into electrical energy. Efforts to develop a next generation of ion exchange membranes exhibiting high perm-selectivity (especially toward monovalent ions) and low electrical resistance, to improve system engineering and to optimize operational conditions, pursue the goal of enhancing the low power density so far achievable (in the order of a few W per m2). This Roadmap takes the form of a series of short contributions written independently by worldwide experts in the topic. Collectively, such contributions provide a comprehensive picture of the current state of the art in membrane science and technology at the water-energy nexus, and how it is expected to develop in the future. In addition, this Roadmap acknowledges the challenges and advances in membrane systems, particularly emphasizing the interplay of material innovation and system optimization, which collectively contribute to advancing the desalination field within the water-energy nexus framework.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BYIRIS - Università degli Studi di CataniaArticle . 2024License: CC BYData sources: IRIS - Università degli Studi di CataniaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2024Data sources: Archivio Istituzionale dell'Università della CalabriaDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad2cf2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BYIRIS - Università degli Studi di CataniaArticle . 2024License: CC BYData sources: IRIS - Università degli Studi di CataniaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2024Data sources: Archivio Istituzionale dell'Università della CalabriaDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad2cf2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Authors: Raed A. Al-Juboori; Raed A. Al-Juboori; Talal Yusaf;This paper reviews various non-conventional techniques for microorganism disruption. Microorganism disruption plays a pivotal role in various agricultural applications such as disinfection of irrigation water, processing of crops and livestock products and the newly emerging area of bioenergy production for agricultural uses. Methods of treatment to destroy microorganisms for the purposes of disinfection or extraction of bio-products can be generally categorized as either thermal treatment methods or non-thermal treatment methods. The thermal methods for microbial disruption are not favorable in many applications such as food processing and water treatment due to its negative impact on product quality and process performance. The discussion of thermal methods for microorganism disruption will not be included in this review. Non-thermal treatments are divided into two groups; chemical and physical treatments. Owing to the concerns of the health organisations with regards to the use of chemical methods for microorganism disruption, the recent research efforts have been directed towards exploring alternative physical methods for rupturing microorganisms. The common alternative physical methods for microorganism disruption include mechanical and non-mechanical treatments. This paper discusses in details the use of the common mechanical treatments for cell disintegration. Such methods include ultrasound, shock wave, High Pressure Homogenization (HPH), Hydrodynamic Cavitation (HC), shear stress, bead milling and micro-fluidizer. The application of the non-mechanical methods for microbial disruption such as electrical treatment, non-thermal plasma, Ultra-Violet (UV), non-conventional chemical methods and some other treatments are also briefly addressed in this paper. Due to the importance of the mechanical methods in the current cell disruption research, more attention is directed to these methods in this work.
Applied Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Authors: Raed A. Al-Juboori; Raed A. Al-Juboori; Talal Yusaf;This paper reviews various non-conventional techniques for microorganism disruption. Microorganism disruption plays a pivotal role in various agricultural applications such as disinfection of irrigation water, processing of crops and livestock products and the newly emerging area of bioenergy production for agricultural uses. Methods of treatment to destroy microorganisms for the purposes of disinfection or extraction of bio-products can be generally categorized as either thermal treatment methods or non-thermal treatment methods. The thermal methods for microbial disruption are not favorable in many applications such as food processing and water treatment due to its negative impact on product quality and process performance. The discussion of thermal methods for microorganism disruption will not be included in this review. Non-thermal treatments are divided into two groups; chemical and physical treatments. Owing to the concerns of the health organisations with regards to the use of chemical methods for microorganism disruption, the recent research efforts have been directed towards exploring alternative physical methods for rupturing microorganisms. The common alternative physical methods for microorganism disruption include mechanical and non-mechanical treatments. This paper discusses in details the use of the common mechanical treatments for cell disintegration. Such methods include ultrasound, shock wave, High Pressure Homogenization (HPH), Hydrodynamic Cavitation (HC), shear stress, bead milling and micro-fluidizer. The application of the non-mechanical methods for microbial disruption such as electrical treatment, non-thermal plasma, Ultra-Violet (UV), non-conventional chemical methods and some other treatments are also briefly addressed in this paper. Due to the importance of the mechanical methods in the current cell disruption research, more attention is directed to these methods in this work.
Applied Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, Germany, FinlandPublisher:Elsevier BV al-Shaeli, Muayad; Al-Juboori, Raed A.; Al Aani, Saif; Ladewig, Bradley P.; Hilal, Nidal;pmid: 35584751
Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, Germany, FinlandPublisher:Elsevier BV al-Shaeli, Muayad; Al-Juboori, Raed A.; Al Aani, Saif; Ladewig, Bradley P.; Hilal, Nidal;pmid: 35584751
Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Talal Yusaf; Leslie Bowtell; Raed A. Al-Juboori;AbstractEnergy characterization of a pulsed ultrasonic system was carried out using a modified calorimetric method. Sonochemical efficiency (SE) for the oxidation of Fe+2 and the formation of H2O2 was determined for selected on:off ratios (R) and different power levels. The measured efficiency of the pulsed ultrasonic system of 60-70% in converting electrical energy into calorimetric energy was found to be constant for all Rratios and equivalent to that for continuous operation. SE of Fe+2 and H2O2 for pulsed ultrasound was higher than that of continuous ultrasound. The ratio R=0.2:0.1 had the highest SE values overall, while for long off-timeratios,R=0.1:0.6 recorded the highest value of SE. These results were supported by the production rates results for Fe+2 and H2O2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Talal Yusaf; Leslie Bowtell; Raed A. Al-Juboori;AbstractEnergy characterization of a pulsed ultrasonic system was carried out using a modified calorimetric method. Sonochemical efficiency (SE) for the oxidation of Fe+2 and the formation of H2O2 was determined for selected on:off ratios (R) and different power levels. The measured efficiency of the pulsed ultrasonic system of 60-70% in converting electrical energy into calorimetric energy was found to be constant for all Rratios and equivalent to that for continuous operation. SE of Fe+2 and H2O2 for pulsed ultrasound was higher than that of continuous ultrasound. The ratio R=0.2:0.1 had the highest SE values overall, while for long off-timeratios,R=0.1:0.6 recorded the highest value of SE. These results were supported by the production rates results for Fe+2 and H2O2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu