- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2018 Italy, Australia, France, France, Belgium, France, Argentina, Italy, France, Spain, France, France, France, Spain, France, France, Argentina, France, United KingdomPublisher:Elsevier BV Funded by:UKRI | SemenRate Canada/UK: Tran...UKRI| SemenRate Canada/UK: Transforming Germplasm and Genetic Quality to Drive Livestock ProductivityJosefino C. Comiso; Irene R. Schloss; Thomas J. Bracegirdle; Jan M. Strugnell; Jan M. Strugnell; Huw J. Griffiths; Julian Gutt; José C. Xavier; Thomas Saucède; A.N. Bertler; A.N. Bertler; Peter Convey; Sieglinde Ott; Yan Ropert-Coudert; Elie Verleyen; Greg Bodeker; Enrique Isla; Uffe N. Nielsen; Cinzia Verde; Scarlett Trimborn; R. Scherer; Diana H. Wall; Francesco d'Ovidio; Stefano Schiaparelli; Jacqueline Stefels; Nerida G. Wilson; Jerónimo López-Martínez; A.L. Post; Rachel D. Cavanagh; Craig R. Smith; Alison E. Murray; D. De Master; R. De Conto; Craig Stevens; G. di Prisco; Vonda J. Cummings; Alia L. Khan;pmid: 28970064
The biodiversity, ecosystem services and climate variability of the Antarctic continent and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas and first steps in their implementation were clustered into eight themes. These ranged from scale problems, through risk maps, and organism/ecosystem responses to multiple environmental changes and evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in Antarctic research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of Antarctic and global ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2018 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/id/eprint/517049/1/Gutt-2018-Cross-disciplinarity-in-the-advance.pdfData sources: NERC Open Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1016/j.margen.2017.09.006Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDFull-Text: https://nora.nerc.ac.uk/id/eprint/517049/1/Gutt-2018-Cross-disciplinarity-in-the-advance.pdfData sources: Bielefeld Academic Search Engine (BASE)Marine GenomicsOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMarine GenomicsReview . 2018License: CC BY NC NDData sources: University of Groningen Research PortalINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)Ghent University Academic BibliographyArticle . 2018Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.margen.2017.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 71 citations 71 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
visibility 24visibility views 24 download downloads 45 Powered bymore_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2018 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/id/eprint/517049/1/Gutt-2018-Cross-disciplinarity-in-the-advance.pdfData sources: NERC Open Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1016/j.margen.2017.09.006Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDFull-Text: https://nora.nerc.ac.uk/id/eprint/517049/1/Gutt-2018-Cross-disciplinarity-in-the-advance.pdfData sources: Bielefeld Academic Search Engine (BASE)Marine GenomicsOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMarine GenomicsReview . 2018License: CC BY NC NDData sources: University of Groningen Research PortalINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)Ghent University Academic BibliographyArticle . 2018Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.margen.2017.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Springer Science and Business Media LLC Kennicutt, Mahlon; Chown, Steven; Cassano, John; Liggett, Daniela; Massom, Rob; Peck, Lloyd; Rintoul, Steve; Storey, John; Vaughan, David; Wilson, Terry; Sutherland, William; Ropert‐coudert, Yan;doi: 10.1038/512023a
pmid: 25100467
Antarctica. The word conjures up images of mountains draped with glaciers, ferocious seas dotted with icebergs and iconic species found nowhere else. The continent includes about one-tenth of the planet's land surface, nearly 90% of Earth's ice and about 70% of its fresh water. Its encircling ocean supports Patagonian toothfish and krill fisheries, and is crucial for regulating climate and the uptake of carbon dioxide by sea water.
Nature arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/512023a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 193 citations 193 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nature arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/512023a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:The Royal Society Authors: André Chiaradia; Akiko Kato; Akiko Kato; Yan Ropert-Coudert;Although the impact of environmental changes on the demographic parameters of top predators is well established, the mechanisms by which populations are affected remain poorly understood. Here, we show that a reduction in the thermal stratification of coastal water masses between 2005 and 2006 was associated with reduced foraging and breeding success of little penguins Eudyptula minor , major bio-indicators of the Bass Strait ecosystem in southern Australia. The foraging patterns of the penguins suggest that their prey disperse widely in poorly stratified waters, leading to reduced foraging efficiency and poor breeding success. Mixed water regimes resulting from storms are currently unusual during the breeding period of these birds, but are expected to become more frequent due to climate change.
Proceedings of the R... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverProceedings of the Royal Society B Biological SciencesArticle . 2009 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2010Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2009.1399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverProceedings of the Royal Society B Biological SciencesArticle . 2009 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2010Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2009.1399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, South Africa, Germany, Italy, United States, France, United Kingdom, United Kingdom, Belgium, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | SGER: Foraging Patterns o..., NSF | Collaborative Research: W...NSF| SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf ,NSF| Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross SeaPeter L. Boveng; Ian D. Jonsen; Mark A. Hindell; Yan Ropert-Coudert; Knowles Kerry; Rachael Alderman; Silvia Olmastroni; Peter G. Ryan; Leigh G. Torres; Azwianewi B. Makhado; Andrew D. Lowther; Stuart Corney; Luis A. Hückstädt; Dominik A Nachtsheim; Dominik A Nachtsheim; Kit M. Kovacs; Simon Wotherspoon; Simon Wotherspoon; Michael E. Goebel; Jefferson T. Hinke; José C. Xavier; José C. Xavier; Ben Raymond; Ben Raymond; Ben Raymond; Karine Delord; Kerstin Jerosch; Arnoldus Schytte Blix; Ben Arthur; Clive R. McMahon; Clive R. McMahon; Barbara Wienecke; Klemens Pütz; Pierre A. Pistorius; Rochelle Constantine; Bruno Danis; Keith W. Nicholls; Mary-Anne Lea; Arnaud Tarroux; Ryan R. Reisinger; Ryan R. Reisinger; Joachim Plötz; Louise Emmerson; Kimberly T. Goetz; Akinori Takahashi; Jaimie Cleeland; Sébastien Descamps; Colin Southwell; Mike Double; Michael A. Fedak; Simon D. Goldsworthy; Erling S. Nordøy; Iain J. Staniland; Mônica M. C. Muelbert; Mônica M. C. Muelbert; P J Nico de Bruyn; Christophe Guinet; Kieran Lawton; Mercedes Santos; Philip N. Trathan; Lars Boehme; Henri Weimerskirch; John L. Bengtson; Roger Kirkwood; Norman Ratcliffe; Ewan D. Wakefield; Gerald L. Kooyman; David R. Thompson; Robert J. M. Crawford; Grant Ballard; Marthán N Bester; Steven L. Chown; Virginia Andrews-Goff; Virginia Andrews-Goff; Jean-Benoît Charrassin; Richard A. Phillips; Phil O'b. Lyver; Birgitte I. McDonald; Nick Gales; Charles-André Bost; M. E. I. Marquez; Wayne Z. Trivelpiece; Anton Van de Putte; Akiko Kato; Robert Harcourt; Luciano Dalla Rosa; Ari S. Friedlaender; Christian Lydersen; Horst Bornemann; Daniel P. Costa;Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.
CORE arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2566t0r0Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2126-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 198 citations 198 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2566t0r0Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2126-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, Spain, Australia, Spain, France, South Africa, United Kingdom, AustraliaPublisher:Frontiers Media SA Yan Ropert-Coudert; Andre Chiaradia; David Ainley; Andres Barbosa; P. Dee Boersma; Rebecka Brasso; Meagan Dewar; Ursula Ellenberg; Pablo García-Borboroglu; Louise Emmerson; Rachel Hickcox; Stephanie Jenouvrier; Stephanie Jenouvrier; Akiko Kato; Rebecca Ruth McIntosh; Phoebe Lewis; Phoebe Lewis; Francisco Ramírez; Valeria Ruoppolo; Valeria Ruoppolo; Peter G. Ryan; Philip J. Seddon; Richard Brain Sherley; Richard Brain Sherley; Ralph E. T. Vanstreels; Ralph E. T. Vanstreels; Lauren J. Waller; Lauren J. Waller; Eric J. Woehler; Eric J. Woehler; Phil N. Trathan;handle: 10566/8107 , 1912/24332 , 10871/128651
Penguins face a wide range of threats. Most observed population changes have been negative and have happened over the last 60 years. Today, populations of 11 penguin species are decreasing. Here we present a review that synthesizes details of threats faced by the world's 18 species of penguins. We discuss alterations to their environment at both breeding sites on land and at sea where they forage. The major drivers of change appear to be climate, and food web alterations by marine fisheries. In addition, we also consider other critical and/or emerging threats, namely human disturbance near nesting sites, pollution due to oil, plastics and chemicals such as mercury and persistent organic compounds. Finally, we assess the importance of emerging pathogens and diseases on the health of penguins. We suggest that in the context of climate change, habitat degradation, introduced exotic species and resource competition with fisheries, successful conservation outcomes will require new and unprecedented levels of science and advocacy. Successful conservation stories of penguin species across their geographical range have occurred where there has been concerted effort across local, national and international boundaries to implement effective conservation planning.
Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00248Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00248Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 81visibility views 81 download downloads 52 Powered bymore_vert Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00248Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00248Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, France, PortugalPublisher:Frontiers Media SA Jorge M. Pereira; Thomas A. Clay; Thomas A. Clay; Ryan R. Reisinger; Yan Ropert-Coudert; Ana M. M. Sequeira; Ana M. M. Sequeira;handle: 10316/114140
Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climatechange. Yet no large-scale assessments of threat management strategies exist. Applying astructured participatory approach, we demonstrate that existing conservation efforts areinsufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of nativeterrestrial taxa and land-associated seabirds are likely to decline by 2100 under current tra-jectories. Emperor penguins are identified as the most vulnerable taxon, followed by otherseabirds and dry soil nematodes. We find that implementing 10 key threat managementstrategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasivethreat to Antarctic biodiversity and influencing global policy to effectively limit climate changeis the most beneficial conservation strategy. However, minimising impacts of human activi-ties and improved planning and management of new infrastructure projects are cost-effec-tive and will help to minimise regional threats. Simultaneous global and regional efforts arecritical to secure Antarctic biodiversity for future generations.
e-Prints Soton arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.1119428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.1119428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Inter-Research Science Center Muller, C. G.; Chilvers, B. L.; Chiaradia, A.; French, R. K.; Kato, Akiko; Ropert‐coudert, Yan; Battley, Phil F.;doi: 10.3354/meps13911
Foraging behaviour is crucial to breeding success for marine predators, including seabirds. Yellow-eyed penguins Megadyptes antipodes are central-place, predominantly benthic foragers around mainland New Zealand. The northern (mainland) population of this Endangered species is declining, with changes in the marine environment a suspected cause, particularly warming water and poorer foraging success. We undertook a detailed foraging study of the data-deficient subantarctic population, which is distinct from the northern population. Over 2 breeding seasons, we collected 91 GPS foraging logs from 69 breeding yellow-eyed penguins from Enderby Island, Auckland Islands, New Zealand. The mean foraging distance was 24 km from shore (max 47 km). Foraging area size was greater for females and for pelagic foragers, although benthic foragers travelled further from shore on average. Diving plasticity was evident both in diving behaviour and foraging area use. Foraging area and distance from shore were greater for all birds in a year of greater breeding effort and fledging success (2016). Foraging occurred over continental shelf waters, similar to the mainland, and in areas up to 150 m deep, so any differences in foraging behaviour compared to those reported for the northern population are likely influenced by local bathymetry, environmental conditions, and individual preference. Despite comparable bathymetry in some areas, the southern population showed greater foraging plasticity, with 62% of foraging trips categorised as pelagic, implying that subantarctic foraging conditions may differ from the predominantly benthic mainland foraging. Variable foraging conditions may therefore have implications for future breeding success in the subantarctic.
HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, FrancePublisher:The Company of Biologists Funded by:EC | MuFFINEC| MuFFINDupuis, Benjamin; Kato, Akiko; Hicks, Olivia; Wisniewska, Danuta; Marciau, Coline; Angelier, Frédéric; Ropert-Coudert, Yan; Chimienti, Marianna;pmid: 39450537
ABSTRACT Energy governs species' life histories and pace of living, requiring individuals to make trade-offs. However, measuring energetic parameters in the wild is challenging, often resulting in data collected from heterogeneous sources. This complicates comprehensive analysis and hampers transferability within and across case studies. We present a novel framework, combining information obtained from eco-physiology and biologging techniques, to estimate both energy expenditure and intake in 48 Adélie penguins (Pygoscelis adeliae) during the chick-rearing stage. We employed the machine learning algorithm random forest (RF) to predict accelerometry-derived metrics for feeding behaviour using depth data (our proxy for energy acquisition). We also built a time-activity model calibrated with doubly labelled water data to estimate energy expenditure. Using depth-derived time spent diving and amount of vertical movement in the sub-surface phase, we accurately predicted energy expenditure. Movement metrics derived from the RF algorithm deployed on depth data were able to accurately detect the same feeding behaviour predicted from accelerometry. The RF predicted accelerometry-estimated time spent feeding more accurately compared with historical proxies such as number of undulations or dive bottom duration. The proposed framework is accurate, reliable and simple to implement on data from biologging technology widely used on marine species. It enables coupling energy intake and expenditure, which is crucial to further assess individual trade-offs. Our work allows us to revisit historical data, to study how long-term environmental changes affect animal energetics.
HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Journal of Experimental BiologyArticle . 2024License: read_onlyData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.249201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Journal of Experimental BiologyArticle . 2024License: read_onlyData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.249201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Spain, Australia, South Africa, Australia, Australia, DenmarkPublisher:Public Library of Science (PLoS) Funded by:NSF | Polar Seabirds with Long-..., UKRI | Evolutionary history of C..., NSF | COLLABORATIVE RESEARCH: A...NSF| Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics ,UKRI| Evolutionary history of Colobanthus quitensis and its associated micro-organisms ,NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsJasmine R. Lee; Aleks Terauds; Josie Carwardine; Justine D. Shaw; Richard A. Fuller; Hugh P. Possingham; Steven L. Chown; Peter Convey; Neil Gilbert; Kevin A. Hughes; Ewan McIvor; Sharon A. Robinson; Yan Ropert-Coudert; Dana M. Bergstrom; Elisabeth M. Biersma; Claire Christian; Don A. Cowan; Yves Frenot; Stéphanie Jenouvrier; Lisa Kelley; Michael J. Lee; Heather J. Lynch; Birgit Njåstad; Antonio Quesada; Ricardo M. Roura; E. Ashley Shaw; Damon Stanwell-Smith; Megumu Tsujimoto; Diana H. Wall; Annick Wilmotte; Iadine Chadès;Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.
NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FrancePublisher:Public Library of Science (PLoS) Authors: Barreau, Emmanuelle; Kato, Akiko; Chiaradia, Andre; Ropert-Coudert, Yan;As extreme weather is expected to become more frequent with global climate change, it is crucial to evaluate the capacity of species to respond to short-term and unpredictable events. Here, we examined the effect of a strong storm event during the chick-rearing stage of little penguins (Eudyptula minor) from a mega colony in southern Australia. We investigated how a 3-day storm affected the foraging behaviour of little penguins by comparing their foraging activities and body mass change before, during and after the storm event. As strong winds deepened the mixed layer in the birds’ foraging zone during the storm, penguins increased their foraging trip duration, had a lower prey encounter rate and a lower body mass gain. The adverse effects on the foraging efficiency of little penguins continued several days after the storm ceased; even though the water column stratification had returned as before the storm, suggesting a prolonged effect of the storm event on the prey availability. Thus, short-term stochastic events can have an extended impact on the foraging efficiency of penguins. When occurring at a crucial stage of breeding, this may affect breeding success.
PLoS ONE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0254269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0254269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2018 Italy, Australia, France, France, Belgium, France, Argentina, Italy, France, Spain, France, France, France, Spain, France, France, Argentina, France, United KingdomPublisher:Elsevier BV Funded by:UKRI | SemenRate Canada/UK: Tran...UKRI| SemenRate Canada/UK: Transforming Germplasm and Genetic Quality to Drive Livestock ProductivityJosefino C. Comiso; Irene R. Schloss; Thomas J. Bracegirdle; Jan M. Strugnell; Jan M. Strugnell; Huw J. Griffiths; Julian Gutt; José C. Xavier; Thomas Saucède; A.N. Bertler; A.N. Bertler; Peter Convey; Sieglinde Ott; Yan Ropert-Coudert; Elie Verleyen; Greg Bodeker; Enrique Isla; Uffe N. Nielsen; Cinzia Verde; Scarlett Trimborn; R. Scherer; Diana H. Wall; Francesco d'Ovidio; Stefano Schiaparelli; Jacqueline Stefels; Nerida G. Wilson; Jerónimo López-Martínez; A.L. Post; Rachel D. Cavanagh; Craig R. Smith; Alison E. Murray; D. De Master; R. De Conto; Craig Stevens; G. di Prisco; Vonda J. Cummings; Alia L. Khan;pmid: 28970064
The biodiversity, ecosystem services and climate variability of the Antarctic continent and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas and first steps in their implementation were clustered into eight themes. These ranged from scale problems, through risk maps, and organism/ecosystem responses to multiple environmental changes and evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in Antarctic research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of Antarctic and global ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2018 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/id/eprint/517049/1/Gutt-2018-Cross-disciplinarity-in-the-advance.pdfData sources: NERC Open Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1016/j.margen.2017.09.006Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDFull-Text: https://nora.nerc.ac.uk/id/eprint/517049/1/Gutt-2018-Cross-disciplinarity-in-the-advance.pdfData sources: Bielefeld Academic Search Engine (BASE)Marine GenomicsOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMarine GenomicsReview . 2018License: CC BY NC NDData sources: University of Groningen Research PortalINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)Ghent University Academic BibliographyArticle . 2018Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.margen.2017.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 71 citations 71 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
visibility 24visibility views 24 download downloads 45 Powered bymore_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2018 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/id/eprint/517049/1/Gutt-2018-Cross-disciplinarity-in-the-advance.pdfData sources: NERC Open Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1016/j.margen.2017.09.006Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NDFull-Text: https://hal.science/hal-01635409Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDFull-Text: https://nora.nerc.ac.uk/id/eprint/517049/1/Gutt-2018-Cross-disciplinarity-in-the-advance.pdfData sources: Bielefeld Academic Search Engine (BASE)Marine GenomicsOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMarine GenomicsReview . 2018License: CC BY NC NDData sources: University of Groningen Research PortalINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)Ghent University Academic BibliographyArticle . 2018Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.margen.2017.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Springer Science and Business Media LLC Kennicutt, Mahlon; Chown, Steven; Cassano, John; Liggett, Daniela; Massom, Rob; Peck, Lloyd; Rintoul, Steve; Storey, John; Vaughan, David; Wilson, Terry; Sutherland, William; Ropert‐coudert, Yan;doi: 10.1038/512023a
pmid: 25100467
Antarctica. The word conjures up images of mountains draped with glaciers, ferocious seas dotted with icebergs and iconic species found nowhere else. The continent includes about one-tenth of the planet's land surface, nearly 90% of Earth's ice and about 70% of its fresh water. Its encircling ocean supports Patagonian toothfish and krill fisheries, and is crucial for regulating climate and the uptake of carbon dioxide by sea water.
Nature arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/512023a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 193 citations 193 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nature arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/512023a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:The Royal Society Authors: André Chiaradia; Akiko Kato; Akiko Kato; Yan Ropert-Coudert;Although the impact of environmental changes on the demographic parameters of top predators is well established, the mechanisms by which populations are affected remain poorly understood. Here, we show that a reduction in the thermal stratification of coastal water masses between 2005 and 2006 was associated with reduced foraging and breeding success of little penguins Eudyptula minor , major bio-indicators of the Bass Strait ecosystem in southern Australia. The foraging patterns of the penguins suggest that their prey disperse widely in poorly stratified waters, leading to reduced foraging efficiency and poor breeding success. Mixed water regimes resulting from storms are currently unusual during the breeding period of these birds, but are expected to become more frequent due to climate change.
Proceedings of the R... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverProceedings of the Royal Society B Biological SciencesArticle . 2009 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2010Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2009.1399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverProceedings of the Royal Society B Biological SciencesArticle . 2009 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2010Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2009.1399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, South Africa, Germany, Italy, United States, France, United Kingdom, United Kingdom, Belgium, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | SGER: Foraging Patterns o..., NSF | Collaborative Research: W...NSF| SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf ,NSF| Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross SeaPeter L. Boveng; Ian D. Jonsen; Mark A. Hindell; Yan Ropert-Coudert; Knowles Kerry; Rachael Alderman; Silvia Olmastroni; Peter G. Ryan; Leigh G. Torres; Azwianewi B. Makhado; Andrew D. Lowther; Stuart Corney; Luis A. Hückstädt; Dominik A Nachtsheim; Dominik A Nachtsheim; Kit M. Kovacs; Simon Wotherspoon; Simon Wotherspoon; Michael E. Goebel; Jefferson T. Hinke; José C. Xavier; José C. Xavier; Ben Raymond; Ben Raymond; Ben Raymond; Karine Delord; Kerstin Jerosch; Arnoldus Schytte Blix; Ben Arthur; Clive R. McMahon; Clive R. McMahon; Barbara Wienecke; Klemens Pütz; Pierre A. Pistorius; Rochelle Constantine; Bruno Danis; Keith W. Nicholls; Mary-Anne Lea; Arnaud Tarroux; Ryan R. Reisinger; Ryan R. Reisinger; Joachim Plötz; Louise Emmerson; Kimberly T. Goetz; Akinori Takahashi; Jaimie Cleeland; Sébastien Descamps; Colin Southwell; Mike Double; Michael A. Fedak; Simon D. Goldsworthy; Erling S. Nordøy; Iain J. Staniland; Mônica M. C. Muelbert; Mônica M. C. Muelbert; P J Nico de Bruyn; Christophe Guinet; Kieran Lawton; Mercedes Santos; Philip N. Trathan; Lars Boehme; Henri Weimerskirch; John L. Bengtson; Roger Kirkwood; Norman Ratcliffe; Ewan D. Wakefield; Gerald L. Kooyman; David R. Thompson; Robert J. M. Crawford; Grant Ballard; Marthán N Bester; Steven L. Chown; Virginia Andrews-Goff; Virginia Andrews-Goff; Jean-Benoît Charrassin; Richard A. Phillips; Phil O'b. Lyver; Birgitte I. McDonald; Nick Gales; Charles-André Bost; M. E. I. Marquez; Wayne Z. Trivelpiece; Anton Van de Putte; Akiko Kato; Robert Harcourt; Luciano Dalla Rosa; Ari S. Friedlaender; Christian Lydersen; Horst Bornemann; Daniel P. Costa;Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.
CORE arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2566t0r0Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2126-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 198 citations 198 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2566t0r0Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2126-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, Spain, Australia, Spain, France, South Africa, United Kingdom, AustraliaPublisher:Frontiers Media SA Yan Ropert-Coudert; Andre Chiaradia; David Ainley; Andres Barbosa; P. Dee Boersma; Rebecka Brasso; Meagan Dewar; Ursula Ellenberg; Pablo García-Borboroglu; Louise Emmerson; Rachel Hickcox; Stephanie Jenouvrier; Stephanie Jenouvrier; Akiko Kato; Rebecca Ruth McIntosh; Phoebe Lewis; Phoebe Lewis; Francisco Ramírez; Valeria Ruoppolo; Valeria Ruoppolo; Peter G. Ryan; Philip J. Seddon; Richard Brain Sherley; Richard Brain Sherley; Ralph E. T. Vanstreels; Ralph E. T. Vanstreels; Lauren J. Waller; Lauren J. Waller; Eric J. Woehler; Eric J. Woehler; Phil N. Trathan;handle: 10566/8107 , 1912/24332 , 10871/128651
Penguins face a wide range of threats. Most observed population changes have been negative and have happened over the last 60 years. Today, populations of 11 penguin species are decreasing. Here we present a review that synthesizes details of threats faced by the world's 18 species of penguins. We discuss alterations to their environment at both breeding sites on land and at sea where they forage. The major drivers of change appear to be climate, and food web alterations by marine fisheries. In addition, we also consider other critical and/or emerging threats, namely human disturbance near nesting sites, pollution due to oil, plastics and chemicals such as mercury and persistent organic compounds. Finally, we assess the importance of emerging pathogens and diseases on the health of penguins. We suggest that in the context of climate change, habitat degradation, introduced exotic species and resource competition with fisheries, successful conservation outcomes will require new and unprecedented levels of science and advocacy. Successful conservation stories of penguin species across their geographical range have occurred where there has been concerted effort across local, national and international boundaries to implement effective conservation planning.
Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00248Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00248Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 81visibility views 81 download downloads 52 Powered bymore_vert Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00248Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00248Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, France, PortugalPublisher:Frontiers Media SA Jorge M. Pereira; Thomas A. Clay; Thomas A. Clay; Ryan R. Reisinger; Yan Ropert-Coudert; Ana M. M. Sequeira; Ana M. M. Sequeira;handle: 10316/114140
Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climatechange. Yet no large-scale assessments of threat management strategies exist. Applying astructured participatory approach, we demonstrate that existing conservation efforts areinsufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of nativeterrestrial taxa and land-associated seabirds are likely to decline by 2100 under current tra-jectories. Emperor penguins are identified as the most vulnerable taxon, followed by otherseabirds and dry soil nematodes. We find that implementing 10 key threat managementstrategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasivethreat to Antarctic biodiversity and influencing global policy to effectively limit climate changeis the most beneficial conservation strategy. However, minimising impacts of human activi-ties and improved planning and management of new infrastructure projects are cost-effec-tive and will help to minimise regional threats. Simultaneous global and regional efforts arecritical to secure Antarctic biodiversity for future generations.
e-Prints Soton arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.1119428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.1119428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Inter-Research Science Center Muller, C. G.; Chilvers, B. L.; Chiaradia, A.; French, R. K.; Kato, Akiko; Ropert‐coudert, Yan; Battley, Phil F.;doi: 10.3354/meps13911
Foraging behaviour is crucial to breeding success for marine predators, including seabirds. Yellow-eyed penguins Megadyptes antipodes are central-place, predominantly benthic foragers around mainland New Zealand. The northern (mainland) population of this Endangered species is declining, with changes in the marine environment a suspected cause, particularly warming water and poorer foraging success. We undertook a detailed foraging study of the data-deficient subantarctic population, which is distinct from the northern population. Over 2 breeding seasons, we collected 91 GPS foraging logs from 69 breeding yellow-eyed penguins from Enderby Island, Auckland Islands, New Zealand. The mean foraging distance was 24 km from shore (max 47 km). Foraging area size was greater for females and for pelagic foragers, although benthic foragers travelled further from shore on average. Diving plasticity was evident both in diving behaviour and foraging area use. Foraging area and distance from shore were greater for all birds in a year of greater breeding effort and fledging success (2016). Foraging occurred over continental shelf waters, similar to the mainland, and in areas up to 150 m deep, so any differences in foraging behaviour compared to those reported for the northern population are likely influenced by local bathymetry, environmental conditions, and individual preference. Despite comparable bathymetry in some areas, the southern population showed greater foraging plasticity, with 62% of foraging trips categorised as pelagic, implying that subantarctic foraging conditions may differ from the predominantly benthic mainland foraging. Variable foraging conditions may therefore have implications for future breeding success in the subantarctic.
HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, FrancePublisher:The Company of Biologists Funded by:EC | MuFFINEC| MuFFINDupuis, Benjamin; Kato, Akiko; Hicks, Olivia; Wisniewska, Danuta; Marciau, Coline; Angelier, Frédéric; Ropert-Coudert, Yan; Chimienti, Marianna;pmid: 39450537
ABSTRACT Energy governs species' life histories and pace of living, requiring individuals to make trade-offs. However, measuring energetic parameters in the wild is challenging, often resulting in data collected from heterogeneous sources. This complicates comprehensive analysis and hampers transferability within and across case studies. We present a novel framework, combining information obtained from eco-physiology and biologging techniques, to estimate both energy expenditure and intake in 48 Adélie penguins (Pygoscelis adeliae) during the chick-rearing stage. We employed the machine learning algorithm random forest (RF) to predict accelerometry-derived metrics for feeding behaviour using depth data (our proxy for energy acquisition). We also built a time-activity model calibrated with doubly labelled water data to estimate energy expenditure. Using depth-derived time spent diving and amount of vertical movement in the sub-surface phase, we accurately predicted energy expenditure. Movement metrics derived from the RF algorithm deployed on depth data were able to accurately detect the same feeding behaviour predicted from accelerometry. The RF predicted accelerometry-estimated time spent feeding more accurately compared with historical proxies such as number of undulations or dive bottom duration. The proposed framework is accurate, reliable and simple to implement on data from biologging technology widely used on marine species. It enables coupling energy intake and expenditure, which is crucial to further assess individual trade-offs. Our work allows us to revisit historical data, to study how long-term environmental changes affect animal energetics.
HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Journal of Experimental BiologyArticle . 2024License: read_onlyData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.249201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Journal of Experimental BiologyArticle . 2024License: read_onlyData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.249201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Spain, Australia, South Africa, Australia, Australia, DenmarkPublisher:Public Library of Science (PLoS) Funded by:NSF | Polar Seabirds with Long-..., UKRI | Evolutionary history of C..., NSF | COLLABORATIVE RESEARCH: A...NSF| Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics ,UKRI| Evolutionary history of Colobanthus quitensis and its associated micro-organisms ,NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsJasmine R. Lee; Aleks Terauds; Josie Carwardine; Justine D. Shaw; Richard A. Fuller; Hugh P. Possingham; Steven L. Chown; Peter Convey; Neil Gilbert; Kevin A. Hughes; Ewan McIvor; Sharon A. Robinson; Yan Ropert-Coudert; Dana M. Bergstrom; Elisabeth M. Biersma; Claire Christian; Don A. Cowan; Yves Frenot; Stéphanie Jenouvrier; Lisa Kelley; Michael J. Lee; Heather J. Lynch; Birgit Njåstad; Antonio Quesada; Ricardo M. Roura; E. Ashley Shaw; Damon Stanwell-Smith; Megumu Tsujimoto; Diana H. Wall; Annick Wilmotte; Iadine Chadès;Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.
NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FrancePublisher:Public Library of Science (PLoS) Authors: Barreau, Emmanuelle; Kato, Akiko; Chiaradia, Andre; Ropert-Coudert, Yan;As extreme weather is expected to become more frequent with global climate change, it is crucial to evaluate the capacity of species to respond to short-term and unpredictable events. Here, we examined the effect of a strong storm event during the chick-rearing stage of little penguins (Eudyptula minor) from a mega colony in southern Australia. We investigated how a 3-day storm affected the foraging behaviour of little penguins by comparing their foraging activities and body mass change before, during and after the storm event. As strong winds deepened the mixed layer in the birds’ foraging zone during the storm, penguins increased their foraging trip duration, had a lower prey encounter rate and a lower body mass gain. The adverse effects on the foraging efficiency of little penguins continued several days after the storm ceased; even though the water column stratification had returned as before the storm, suggesting a prolonged effect of the storm event on the prey availability. Thus, short-term stochastic events can have an extended impact on the foraging efficiency of penguins. When occurring at a crucial stage of breeding, this may affect breeding success.
PLoS ONE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0254269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0254269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu