- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Zhen Liu; Ziyuan Chi; Mohamed Osmani; Peter Demian;doi: 10.3390/su13042090
‘Smart cities’ are a new type of city where stakeholders are jointly responsible for urban management. City Information Management (CIM) is an output tool for smart city planning and management, which assists in achieving the sustainable development of urban infrastructure, and promotes smart cities to achieve the goals of stable global economic development, sustainable environmental development, and improvement of people’s quality of life. Existing research has so far established that blockchain and BIM have great potential to enhance construction project performance. However, there is little research on how blockchain and BIM can support sustainable building design and construction. Therefore, the aim of this paper is to explore the potential impact of the integration of blockchain and BIM in a smart city environment on making buildings more sustainable within the context of CIM/Smart Cities. The paper explores the relationships between blockchain, BIM and sustainable building across the life cycle stage of a construction project. This paper queries the Web of Science (WoS) database with keywords to obtain relevant publication, and then uses the VOSviewer to visually analyze the relationships between blockchain, BIM, and sustainable building within the context of smart cities and CIM, which is conducted in bibliometric analysis followed by micro scheme analysis. The results demonstrate the value of this method in gauging the importance of these three topics, highlighting their interrelationships and identifying trends, giving researchers an objective research direction. Those aspects reported in the paper constitute an original contribution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Yali Chen; Xiaozi Wang; Zhen Liu; Jia Cui; Mohamed Osmani; Peter Demian;Sustainable development, which has become the priority study of architectural design, is receiving increasing attention with global climate change. At the same time, the building industry is urgently changing towards intelligent and digitalized tendencies. As a result, Building Information Modeling (BIM) and the Internet of Things (IoT) make crucial contributions to the transforming process. However, there is little knowledge of the integration of BIM–IoT in sustainable building from a macro perspective. Moreover, most existing research adopts a literature review method and lacks objective quantitative analysis. Few papers use bibliometric analysis to study the respective BIM and IoT research fields. Furthermore, few studies use Citespace software tools to analyze the integrated application of BIM–IoT. Therefore, this paper aims to investigate the research frontiers and knowledge structure in BIM–IoT integration and the relationship between BIM-IoT and sustainable building and explore the research hotspots, trends, and future research directions. A quick and objective method was proposed to understand the research status of these new and rapidly developing fields. This paper uses topic search in the web of science core collection to obtain relevant literature and then uses Citespace for bibliometric analysis based on the literature review. Controlled terms and subject terms statistics from the Engineering Index core database search results are also used to briefly examine the fields’ research frontiers and hotspots as obtained from Citespace. The results show that: (1) The research on BIM–IoT integration focuses on building intelligence with BIM as the basis of application, and research on BIM–IoT integration within the field of sustainable building is currently focused on the first three phases of the life cycle. (2) The development of sustainable buildings needs to be considered on its human and social dimensions. BIM provides a platform for sharing information and communication among stakeholders involved in the building’s entire life cycle. At the same time, IoT allows occupants to better participate in buildings’ sustainable design and decision making. (3) In the future, more emerging technologies such as cloud computing and big data are required to better promote sustainable buildings and thus realize the construction of sustainable smart cities. At the same time, researchers should also pay attention to the sustainable transformation of existing buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13020288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13020288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Zhen Liu; Tzuhui Wu; Fenghong Wang; Mohamed Osmani; Peter Demian;doi: 10.3390/su141912145
Despite the large quantities of secondary materials flowing within the built environment, their actual volume and respective waste management processes are not accurately known and recorded. Consequently, various sustainability and material efficiency policies are not supported by accurate data and information-reporting associated with secondary materials’ availability and sourcing. Many recent studies have shown that the integration of digital technologies such as city information management (CIM), building information modeling (BIM), and blockchain have the potential to enhance construction waste management (CWM) by classifying recycled materials and creating value from waste. However, there is insufficient guidance to address the challenges during the process of CWM. Therefore, the research reported in this paper aims to develop a blockchain-enhanced construction waste information management conceptual framework (BeCW). This paper is the first attempt to apply the strengths of integrated information-management modeling with blockchain to optimize the process of CWM, which includes a WasteChain for providing a unified and trustworthy credit system for evaluating construction-waste-recyclability to stakeholders. This is enabled through the use of blockchain and self-executing smart contracts to clarify the responsibility and ownership of the relevant stakeholders. As a result, this study provides a unified and explicit framework for referencing which quantifies the value-contribution of stakeholders to waste-recovery and the optimization of secondary construction materials for reuse and recycling. It also addresses the issue of sustainable CWM through information exchange at four levels: user, application, service, and infrastructure data levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Zhen Liu; Ziheng An; Mohamed Osmani;Currently, sport is considered an entertainment and leisure industry and includes activities such as athletics, water, and skiing. The influence of a sport event exceeds the event itself, which indicates the importance of a sport facility to the building and construction. A sport facility refers to a facility related to the sport industry, mainly including not only stadiums, swimming pools, and sport centers, but also water parks, ski resorts, and other amusement facilities. At present, there is a lack of comprehensive exploration of integrated building information modeling (BIM) with sport and facilities and performance of applications to help identify potential opportunities to support sustainable development. Therefore, this paper aims to explore the integration of BIM, sport, and facility by revealing the current research status and hotspots in the field, which identifies the development lineage and emerging areas of the research and highlights the development trends and directions for future research towards sustainable development. This paper adopts a quantitative research method to investigate the current research status, hotspots, emerging areas, development trends, and important directions in the integration of BIM, sport, and facilities from macro-quantitative perspectives via bibliometric tools, i.e., VOSviewer and CiteSpace software packages. The main findings of this paper are that the hot keywords on the integration of BIM, sport, and facilities are mainly focused on BIM, facility management, framework, management, sport, construction, and design. Moreover, over the past 26 years (year 1997 to 2022), hot keywords for each year have been revealed through keyword co-occurrence overlay visualization analysis and identified in five schemes, i.e., life cycle assessment, emerging technology, behavior and sport, health and wellbeing, and sustainable built environment. Furthermore, the application of deep learning, IoT, and immersive experience technologies are current hot topics which could provide more innovative breakthroughs for the integration of BIM, sport, and facilities in the future for sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Zhen Liu; Peixuan Li; Fenghong Wang; Mohamed Osmani; Peter Demian;Governments across the world are taking actions to address the high carbon emissions associated with the construction industry, and to achieve the long-term goals of the Paris Agreement towards carbon neutrality. Although the ideal of the carbon-emission reduction in building projects is well acknowledged and generally accepted, it is proving more difficult to implement. The application of building information modeling (BIM) brings about new possibilities for reductions in carbon emissions within the context of sustainable buildings. At present, the studies on BIM associated with carbon emissions have concentrated on the design stage, with the topics focusing on resource efficiency (namely, building energy and carbon-emission calculators). However, the effect of BIM in reducing carbon emissions across the lifecycle phases of buildings is not well researched. Therefore, this paper aims to examine the relationship between BIM, carbon emissions, and sustainable buildings by reviewing and assessing the current state of the research hotspots, trends, and gaps in the field of BIM and carbon emissions, providing a reference for understanding the current body of knowledge, and helping to stimulate future research. This paper adopts the macroquantitative and microqualitative research methods of bibliometric analysis. The results show that, in green-building construction, building lifecycle assessments, sustainable materials, the building energy efficiency and design, and environmental-protection strategies are the five most popular research directions of BIM in the field of carbon emissions in sustainable buildings. Interestingly, China has shown a good practice of using BIM for carbon-emission reduction. Furthermore, the findings suggest that the current research in the field is focused on the design and construction stages, which indicates that the operational and demolition stages have greater potential for future research. The results also indicate the need for policy and technological drivers for the rapid development of BIM-driven carbon-emission reduction.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph191912820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph191912820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Ziyuan Chi; Zhen Liu; Fenghong Wang; Mohamed Osmani;doi: 10.3390/su152416608
The transition from a linear economy (LE) to a circular economy (CE) is not just about mitigating the negative impacts of LE, but also about considering changes in infrastructure, while leveraging the power of technology to reduce resource production and consumption and waste generation, and improve long-term resilience. The existing research suggests that digital technologies (DTs) have great potential to drive the CE. However, despite the exponential growth and increasing interest in studies on DTs and the CE from year 2016 onwards, few systematic studies on the application of DTs to enable the CE have been found. In addition, the current status and development direction of the DT-driven CE is unclear, and the potential of DTs to support CE implementation is under-researched. Therefore, the aim of this paper is to explore the potential of DTs to drive the CE. This paper set out to analyze the current status and development of the DT-driven CE and examine future development trends in the field. Using a systematic literature review approach, this paper is the first attempt to use a mixed method, i.e., to combine macro-quantitative bibliometric methods with a micro-qualitative content analysis method to explore the DT-driven CE. The results, which include the research background, co-occurrence clusters, research hotspots, and development trends of keyword co-occurrence network visualization and keyword burst detection, are presented from a macro perspective using two bibliometric analysis softwares. In addition, the use of 13 specific DTs in the CE is analyzed according to seven disciplinary areas (Environmental Sciences and Ecology, Engineering, Science and Technology and Other Topics, Business Economics, Computer Science, Operations Research and Management Science, and Construction and Building Technology) of greatest interest from a micro-qualitative point of view. Further, future trends and challenges facing DT-driven CE development are explored and feasible directions for solutions are proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152416608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152416608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Yali Chen; Dan Huang; Zhen Liu; Mohamed Osmani; Peter Demian;doi: 10.3390/su141610028
At present, the smart city offers the most desired state of urban development, encompassing, as it does, the concept of sustainable development. The creation of a smart city is closely associated with upgrading the construction industry to encompass many emerging concepts and technologies, such as Construction 4.0, with its roots in Industry 4.0, and the deployment of building information modeling (BIM) as an essential tool for the construction industry. Therefore, this paper aims to explore the current state of the art and development trajectory of the multidisciplinary integration of Construction 4.0, Industry 4.0, BIM, and sustainable construction in the context of the smart city. It is the first attempt in the literature to use both macro-quantitative analysis and micro-qualitative analysis methods to investigate this multidisciplinary research topic. By using the visual bibliometric tool, VOSviewer, and based on macro keyword co-occurrence, this paper is the first to reveal the five keyword-constructed schemes, research hotspots, and development trends of the smart city, Construction 4.0, Industry 4.0, BIM, and sustainable construction, from 2014 to 2021 (a period of eight years). Additionally, the top 11 productive subject areas have been identified with the help of VOSviewer software keyword-clustering analysis and application. Furthermore, the whole-building life cycle is considered as an aid to identifying research gaps and trends, providing suggestions for future research with the assistance of an upgraded version of BIM, namely, city information modeling (CIM) and the future integration of Industry 5.0 and Construction 5.0, or even of Industry Metaverse with Construction Metaverse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Jing Liu; Zhen Liu; Qiong Yang; Mohamed Osmani; Peter Demian;The sustainable development of the furniture industry is experiencing the challenges of energy consumption and waste disposal. Product–service systems (PSSs) have the potential to promote sustainable development and the opportunity to transition to a circular economy (CE). PSSs can bring a series of benefits to sustainable furniture, but there are still some problems to be considered, such as the safe storage and transmission of information and data and the protection of stakeholders’ rights and interests. With digitization becoming a major trend, emerging digital technologies such as blockchain (BC) are proving to have the potential to solve related problems. Therefore, this paper aims to integrate the potential roles of BC and PSSs in the lifecycle of sustainable furniture. This paper adopts a mixed quantitative and qualitative research method. Firstly, the potential relationship among furniture, PSSs, and BC was quantitatively analyzed by VOSviewer. Secondly, this paper qualitatively analyzes the lifecycle stages of sustainable furniture, the advantages of PSSs to promote sustainable furniture, and the potential of BC to enhance the PSSs information model (IM) to further promote sustainable furniture to address related challenges. Subsequently, the conceptual BC-enhanced PSSs IM (BC-PSSs) framework was constructed, which contains the high-level and the low-level of structure and process, and then reviewed and refined through pre-interview questionnaires and follow-up interviews by industry experts and scholars. In addition, discussing the contribution of the conceptual BC-PSSs framework in sustainable furniture, and the potential of BC-PSSs in quantifying design value, encouraging designers to contribute value, and exploring the potential role of BC-PSSs in supporting sustainable consumer behavior. It is the first attempt to construct a conceptual BC-enhanced PSSs IM framework for sustainable furniture from the perspective of lifecycle stages, which can serve as a reference for researchers and policymakers in relevant directions to support sustainable development, in particular contributing to the achievement of SDGs 11 (Sustainable Cities and Communities) and SDGs 12 (Responsible Consumption and Production).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13010085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13010085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Zhen Liu; Jing Liu; Mohamed Osmani;doi: 10.3390/su13137217
Circular economy (CE) is a concept actively advocated by the European Union (EU), China, Japan, and the United Kingdom. At present, CE is considered to grant the most traction for companies to achieve sustainable development. However, CE is still rarely adopted by enterprises. As the backbone of the fourth industrial revolution, the digital economy (DE) is considered to have a disruptive effect. Studies have shown that digital technology has great potential in promoting the development of CE. Especially during the COVID-19 epidemic that has severely negatively affected the global economy, environment, and society, CE and DE are receiving high attention from policy makers, practitioners, and scholars around the world. However, the integration of CE and digital technology is a small and rapidly developing research field that is still in its infancy. Although there is a large amount of research in the fields of CE and DE, respectively, there are few studies that look into integrating these two fields. Therefore, the purpose of this paper is to explore the research progress and trends of the integration of CE and DE, and provide an overview for future research. This paper adopts a bibliometric research method, employs the Web of Science database as its literature source, and uses VOSviewer visual software to carry out keyword co-occurrence analysis, which focuses on publication trends, journal sources, keyword visualization, multidisciplinary areas, life cycle stages, and application fields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Zhen Liu; Ziyuan Chi; Mohamed Osmani; Peter Demian;doi: 10.3390/su13042090
‘Smart cities’ are a new type of city where stakeholders are jointly responsible for urban management. City Information Management (CIM) is an output tool for smart city planning and management, which assists in achieving the sustainable development of urban infrastructure, and promotes smart cities to achieve the goals of stable global economic development, sustainable environmental development, and improvement of people’s quality of life. Existing research has so far established that blockchain and BIM have great potential to enhance construction project performance. However, there is little research on how blockchain and BIM can support sustainable building design and construction. Therefore, the aim of this paper is to explore the potential impact of the integration of blockchain and BIM in a smart city environment on making buildings more sustainable within the context of CIM/Smart Cities. The paper explores the relationships between blockchain, BIM and sustainable building across the life cycle stage of a construction project. This paper queries the Web of Science (WoS) database with keywords to obtain relevant publication, and then uses the VOSviewer to visually analyze the relationships between blockchain, BIM, and sustainable building within the context of smart cities and CIM, which is conducted in bibliometric analysis followed by micro scheme analysis. The results demonstrate the value of this method in gauging the importance of these three topics, highlighting their interrelationships and identifying trends, giving researchers an objective research direction. Those aspects reported in the paper constitute an original contribution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Yali Chen; Xiaozi Wang; Zhen Liu; Jia Cui; Mohamed Osmani; Peter Demian;Sustainable development, which has become the priority study of architectural design, is receiving increasing attention with global climate change. At the same time, the building industry is urgently changing towards intelligent and digitalized tendencies. As a result, Building Information Modeling (BIM) and the Internet of Things (IoT) make crucial contributions to the transforming process. However, there is little knowledge of the integration of BIM–IoT in sustainable building from a macro perspective. Moreover, most existing research adopts a literature review method and lacks objective quantitative analysis. Few papers use bibliometric analysis to study the respective BIM and IoT research fields. Furthermore, few studies use Citespace software tools to analyze the integrated application of BIM–IoT. Therefore, this paper aims to investigate the research frontiers and knowledge structure in BIM–IoT integration and the relationship between BIM-IoT and sustainable building and explore the research hotspots, trends, and future research directions. A quick and objective method was proposed to understand the research status of these new and rapidly developing fields. This paper uses topic search in the web of science core collection to obtain relevant literature and then uses Citespace for bibliometric analysis based on the literature review. Controlled terms and subject terms statistics from the Engineering Index core database search results are also used to briefly examine the fields’ research frontiers and hotspots as obtained from Citespace. The results show that: (1) The research on BIM–IoT integration focuses on building intelligence with BIM as the basis of application, and research on BIM–IoT integration within the field of sustainable building is currently focused on the first three phases of the life cycle. (2) The development of sustainable buildings needs to be considered on its human and social dimensions. BIM provides a platform for sharing information and communication among stakeholders involved in the building’s entire life cycle. At the same time, IoT allows occupants to better participate in buildings’ sustainable design and decision making. (3) In the future, more emerging technologies such as cloud computing and big data are required to better promote sustainable buildings and thus realize the construction of sustainable smart cities. At the same time, researchers should also pay attention to the sustainable transformation of existing buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13020288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13020288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Zhen Liu; Tzuhui Wu; Fenghong Wang; Mohamed Osmani; Peter Demian;doi: 10.3390/su141912145
Despite the large quantities of secondary materials flowing within the built environment, their actual volume and respective waste management processes are not accurately known and recorded. Consequently, various sustainability and material efficiency policies are not supported by accurate data and information-reporting associated with secondary materials’ availability and sourcing. Many recent studies have shown that the integration of digital technologies such as city information management (CIM), building information modeling (BIM), and blockchain have the potential to enhance construction waste management (CWM) by classifying recycled materials and creating value from waste. However, there is insufficient guidance to address the challenges during the process of CWM. Therefore, the research reported in this paper aims to develop a blockchain-enhanced construction waste information management conceptual framework (BeCW). This paper is the first attempt to apply the strengths of integrated information-management modeling with blockchain to optimize the process of CWM, which includes a WasteChain for providing a unified and trustworthy credit system for evaluating construction-waste-recyclability to stakeholders. This is enabled through the use of blockchain and self-executing smart contracts to clarify the responsibility and ownership of the relevant stakeholders. As a result, this study provides a unified and explicit framework for referencing which quantifies the value-contribution of stakeholders to waste-recovery and the optimization of secondary construction materials for reuse and recycling. It also addresses the issue of sustainable CWM through information exchange at four levels: user, application, service, and infrastructure data levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Zhen Liu; Ziheng An; Mohamed Osmani;Currently, sport is considered an entertainment and leisure industry and includes activities such as athletics, water, and skiing. The influence of a sport event exceeds the event itself, which indicates the importance of a sport facility to the building and construction. A sport facility refers to a facility related to the sport industry, mainly including not only stadiums, swimming pools, and sport centers, but also water parks, ski resorts, and other amusement facilities. At present, there is a lack of comprehensive exploration of integrated building information modeling (BIM) with sport and facilities and performance of applications to help identify potential opportunities to support sustainable development. Therefore, this paper aims to explore the integration of BIM, sport, and facility by revealing the current research status and hotspots in the field, which identifies the development lineage and emerging areas of the research and highlights the development trends and directions for future research towards sustainable development. This paper adopts a quantitative research method to investigate the current research status, hotspots, emerging areas, development trends, and important directions in the integration of BIM, sport, and facilities from macro-quantitative perspectives via bibliometric tools, i.e., VOSviewer and CiteSpace software packages. The main findings of this paper are that the hot keywords on the integration of BIM, sport, and facilities are mainly focused on BIM, facility management, framework, management, sport, construction, and design. Moreover, over the past 26 years (year 1997 to 2022), hot keywords for each year have been revealed through keyword co-occurrence overlay visualization analysis and identified in five schemes, i.e., life cycle assessment, emerging technology, behavior and sport, health and wellbeing, and sustainable built environment. Furthermore, the application of deep learning, IoT, and immersive experience technologies are current hot topics which could provide more innovative breakthroughs for the integration of BIM, sport, and facilities in the future for sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Zhen Liu; Peixuan Li; Fenghong Wang; Mohamed Osmani; Peter Demian;Governments across the world are taking actions to address the high carbon emissions associated with the construction industry, and to achieve the long-term goals of the Paris Agreement towards carbon neutrality. Although the ideal of the carbon-emission reduction in building projects is well acknowledged and generally accepted, it is proving more difficult to implement. The application of building information modeling (BIM) brings about new possibilities for reductions in carbon emissions within the context of sustainable buildings. At present, the studies on BIM associated with carbon emissions have concentrated on the design stage, with the topics focusing on resource efficiency (namely, building energy and carbon-emission calculators). However, the effect of BIM in reducing carbon emissions across the lifecycle phases of buildings is not well researched. Therefore, this paper aims to examine the relationship between BIM, carbon emissions, and sustainable buildings by reviewing and assessing the current state of the research hotspots, trends, and gaps in the field of BIM and carbon emissions, providing a reference for understanding the current body of knowledge, and helping to stimulate future research. This paper adopts the macroquantitative and microqualitative research methods of bibliometric analysis. The results show that, in green-building construction, building lifecycle assessments, sustainable materials, the building energy efficiency and design, and environmental-protection strategies are the five most popular research directions of BIM in the field of carbon emissions in sustainable buildings. Interestingly, China has shown a good practice of using BIM for carbon-emission reduction. Furthermore, the findings suggest that the current research in the field is focused on the design and construction stages, which indicates that the operational and demolition stages have greater potential for future research. The results also indicate the need for policy and technological drivers for the rapid development of BIM-driven carbon-emission reduction.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph191912820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph191912820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Ziyuan Chi; Zhen Liu; Fenghong Wang; Mohamed Osmani;doi: 10.3390/su152416608
The transition from a linear economy (LE) to a circular economy (CE) is not just about mitigating the negative impacts of LE, but also about considering changes in infrastructure, while leveraging the power of technology to reduce resource production and consumption and waste generation, and improve long-term resilience. The existing research suggests that digital technologies (DTs) have great potential to drive the CE. However, despite the exponential growth and increasing interest in studies on DTs and the CE from year 2016 onwards, few systematic studies on the application of DTs to enable the CE have been found. In addition, the current status and development direction of the DT-driven CE is unclear, and the potential of DTs to support CE implementation is under-researched. Therefore, the aim of this paper is to explore the potential of DTs to drive the CE. This paper set out to analyze the current status and development of the DT-driven CE and examine future development trends in the field. Using a systematic literature review approach, this paper is the first attempt to use a mixed method, i.e., to combine macro-quantitative bibliometric methods with a micro-qualitative content analysis method to explore the DT-driven CE. The results, which include the research background, co-occurrence clusters, research hotspots, and development trends of keyword co-occurrence network visualization and keyword burst detection, are presented from a macro perspective using two bibliometric analysis softwares. In addition, the use of 13 specific DTs in the CE is analyzed according to seven disciplinary areas (Environmental Sciences and Ecology, Engineering, Science and Technology and Other Topics, Business Economics, Computer Science, Operations Research and Management Science, and Construction and Building Technology) of greatest interest from a micro-qualitative point of view. Further, future trends and challenges facing DT-driven CE development are explored and feasible directions for solutions are proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152416608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152416608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Yali Chen; Dan Huang; Zhen Liu; Mohamed Osmani; Peter Demian;doi: 10.3390/su141610028
At present, the smart city offers the most desired state of urban development, encompassing, as it does, the concept of sustainable development. The creation of a smart city is closely associated with upgrading the construction industry to encompass many emerging concepts and technologies, such as Construction 4.0, with its roots in Industry 4.0, and the deployment of building information modeling (BIM) as an essential tool for the construction industry. Therefore, this paper aims to explore the current state of the art and development trajectory of the multidisciplinary integration of Construction 4.0, Industry 4.0, BIM, and sustainable construction in the context of the smart city. It is the first attempt in the literature to use both macro-quantitative analysis and micro-qualitative analysis methods to investigate this multidisciplinary research topic. By using the visual bibliometric tool, VOSviewer, and based on macro keyword co-occurrence, this paper is the first to reveal the five keyword-constructed schemes, research hotspots, and development trends of the smart city, Construction 4.0, Industry 4.0, BIM, and sustainable construction, from 2014 to 2021 (a period of eight years). Additionally, the top 11 productive subject areas have been identified with the help of VOSviewer software keyword-clustering analysis and application. Furthermore, the whole-building life cycle is considered as an aid to identifying research gaps and trends, providing suggestions for future research with the assistance of an upgraded version of BIM, namely, city information modeling (CIM) and the future integration of Industry 5.0 and Construction 5.0, or even of Industry Metaverse with Construction Metaverse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Jing Liu; Zhen Liu; Qiong Yang; Mohamed Osmani; Peter Demian;The sustainable development of the furniture industry is experiencing the challenges of energy consumption and waste disposal. Product–service systems (PSSs) have the potential to promote sustainable development and the opportunity to transition to a circular economy (CE). PSSs can bring a series of benefits to sustainable furniture, but there are still some problems to be considered, such as the safe storage and transmission of information and data and the protection of stakeholders’ rights and interests. With digitization becoming a major trend, emerging digital technologies such as blockchain (BC) are proving to have the potential to solve related problems. Therefore, this paper aims to integrate the potential roles of BC and PSSs in the lifecycle of sustainable furniture. This paper adopts a mixed quantitative and qualitative research method. Firstly, the potential relationship among furniture, PSSs, and BC was quantitatively analyzed by VOSviewer. Secondly, this paper qualitatively analyzes the lifecycle stages of sustainable furniture, the advantages of PSSs to promote sustainable furniture, and the potential of BC to enhance the PSSs information model (IM) to further promote sustainable furniture to address related challenges. Subsequently, the conceptual BC-enhanced PSSs IM (BC-PSSs) framework was constructed, which contains the high-level and the low-level of structure and process, and then reviewed and refined through pre-interview questionnaires and follow-up interviews by industry experts and scholars. In addition, discussing the contribution of the conceptual BC-PSSs framework in sustainable furniture, and the potential of BC-PSSs in quantifying design value, encouraging designers to contribute value, and exploring the potential role of BC-PSSs in supporting sustainable consumer behavior. It is the first attempt to construct a conceptual BC-enhanced PSSs IM framework for sustainable furniture from the perspective of lifecycle stages, which can serve as a reference for researchers and policymakers in relevant directions to support sustainable development, in particular contributing to the achievement of SDGs 11 (Sustainable Cities and Communities) and SDGs 12 (Responsible Consumption and Production).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13010085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13010085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Zhen Liu; Jing Liu; Mohamed Osmani;doi: 10.3390/su13137217
Circular economy (CE) is a concept actively advocated by the European Union (EU), China, Japan, and the United Kingdom. At present, CE is considered to grant the most traction for companies to achieve sustainable development. However, CE is still rarely adopted by enterprises. As the backbone of the fourth industrial revolution, the digital economy (DE) is considered to have a disruptive effect. Studies have shown that digital technology has great potential in promoting the development of CE. Especially during the COVID-19 epidemic that has severely negatively affected the global economy, environment, and society, CE and DE are receiving high attention from policy makers, practitioners, and scholars around the world. However, the integration of CE and digital technology is a small and rapidly developing research field that is still in its infancy. Although there is a large amount of research in the fields of CE and DE, respectively, there are few studies that look into integrating these two fields. Therefore, the purpose of this paper is to explore the research progress and trends of the integration of CE and DE, and provide an overview for future research. This paper adopts a bibliometric research method, employs the Web of Science database as its literature source, and uses VOSviewer visual software to carry out keyword co-occurrence analysis, which focuses on publication trends, journal sources, keyword visualization, multidisciplinary areas, life cycle stages, and application fields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu