- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article , Journal 2022Embargo end date: 01 Jan 2022 Germany, Czech Republic, Netherlands, Italy, France, Czech Republic, Switzerland, United Kingdom, NorwayPublisher:American Meteorological Society Funded by:EC | RINGO, AKA | Integrated Carbon Observa..., EC | ICOS +6 projectsEC| RINGO ,AKA| Integrated Carbon Observation System-European Research Infrastructure Consortium ,EC| ICOS ,EC| CoCO2 ,EC| VERIFY ,SNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,AKA| ICOS - Integrated Carbon Observation System: ICOS-ERIC Head Office ,SNSF| ICOS-CH Phase 2 ,AKA| ICOS - Integrated Carbon Observation System; ICOS-FinlandHeiskanen, Jouni; Brümmer, Christian; Buchmann, Nina; Calfapietra, Carlo; Chen, Huilin; Gielen, Bert; Gkritzalis, Thanos; Hammer, Samuel; Hartman, Susan; Herbst, Mathias; Janssens, Ivan, A; Jordan, Armin; Juurola, Eija; Karstens, Ute; Kasurinen, Ville; Kruijt, Bart; Lankreijer, Harry; Levin, Ingeborg; Linderson, Maj-Lena; Loustau, Denis; Merbold, Lutz; Myhre, Cathrine Lund; Papale, Dario; Pavelka, Marian; Pilegaard, Kim; Ramonet, Michel; Rebmann, Corinna; Rinne, Janne; Rivier, Léonard; Saltikoff, Elena; Sanders, Richard; Steinbacher, Martin; Steinhoff, Tobias; Watson, Andrew; Vermeulen, Alex, T; Vesala, Timo; Vítková, Gabriela; Kutsch, Werner; Myhre, Cathrine, Lund;handle: 2067/47800 , 11250/2997159
Abstract Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2°C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
OceanRep arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2997159Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-19-0364.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 1% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 2 Powered bymore_vert OceanRep arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2997159Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-19-0364.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 China (People's Republic of)Publisher:The Royal Society Anders Lindroth; Jutta Holst; Maj-Lena Linderson; Mika Aurela; Tobias Biermann; Michal Heliasz; Jinshu Chi; Andreas Ibrom; Pasi Kolari; Leif Klemedtsson; Alisa Krasnova; Tuomas Laurila; Irene Lehner; Annalea Lohila; Ivan Mammarella; Meelis Mölder; Mikaell Ottosson Löfvenius; Matthias Peichl; Kim Pilegaard; Kaido Soosaar; Timo Vesala; Patrik Vestin; Per Weslien; Mats Nilsson;The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m −2 yr −1 during 2018 as compared to the reference year. The NEP anomaly ranged between −389 and +74 g C m −2 yr −1 with a median value of −59 g C m −2 yr −1 . This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022Embargo end date: 01 Jan 2022 Germany, Czech Republic, Netherlands, Italy, France, Czech Republic, Switzerland, United Kingdom, NorwayPublisher:American Meteorological Society Funded by:EC | RINGO, AKA | Integrated Carbon Observa..., EC | ICOS +6 projectsEC| RINGO ,AKA| Integrated Carbon Observation System-European Research Infrastructure Consortium ,EC| ICOS ,EC| CoCO2 ,EC| VERIFY ,SNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,AKA| ICOS - Integrated Carbon Observation System: ICOS-ERIC Head Office ,SNSF| ICOS-CH Phase 2 ,AKA| ICOS - Integrated Carbon Observation System; ICOS-FinlandHeiskanen, Jouni; Brümmer, Christian; Buchmann, Nina; Calfapietra, Carlo; Chen, Huilin; Gielen, Bert; Gkritzalis, Thanos; Hammer, Samuel; Hartman, Susan; Herbst, Mathias; Janssens, Ivan, A; Jordan, Armin; Juurola, Eija; Karstens, Ute; Kasurinen, Ville; Kruijt, Bart; Lankreijer, Harry; Levin, Ingeborg; Linderson, Maj-Lena; Loustau, Denis; Merbold, Lutz; Myhre, Cathrine Lund; Papale, Dario; Pavelka, Marian; Pilegaard, Kim; Ramonet, Michel; Rebmann, Corinna; Rinne, Janne; Rivier, Léonard; Saltikoff, Elena; Sanders, Richard; Steinbacher, Martin; Steinhoff, Tobias; Watson, Andrew; Vermeulen, Alex, T; Vesala, Timo; Vítková, Gabriela; Kutsch, Werner; Myhre, Cathrine, Lund;handle: 2067/47800 , 11250/2997159
Abstract Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2°C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
OceanRep arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2997159Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-19-0364.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 1% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 2 Powered bymore_vert OceanRep arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2997159Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-19-0364.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 China (People's Republic of)Publisher:The Royal Society Anders Lindroth; Jutta Holst; Maj-Lena Linderson; Mika Aurela; Tobias Biermann; Michal Heliasz; Jinshu Chi; Andreas Ibrom; Pasi Kolari; Leif Klemedtsson; Alisa Krasnova; Tuomas Laurila; Irene Lehner; Annalea Lohila; Ivan Mammarella; Meelis Mölder; Mikaell Ottosson Löfvenius; Matthias Peichl; Kim Pilegaard; Kaido Soosaar; Timo Vesala; Patrik Vestin; Per Weslien; Mats Nilsson;The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m −2 yr −1 during 2018 as compared to the reference year. The NEP anomaly ranged between −389 and +74 g C m −2 yr −1 with a median value of −59 g C m −2 yr −1 . This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu