- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Wiley Deon Arey; Joseph S. Boyle; Haydn J.D. Thomas; Paden Lennie; Samuel McLeod; Edward McLeod; Cameron D. Eckert; Richard R. Gordon; Jakob J. Assmann; Sandra Angers-Blondin; Andrew M. Cunliffe; Meagan M. Grabowski; Gergana N. Daskalova; Ricky Joe; Isla H. Myers-Smith; Anne D. Bjorkman; Anne D. Bjorkman;AbstractThe Arctic tundra is warming rapidly, yet the exact mechanisms linking warming and observed ecological changes are often unclear. Understanding mechanisms of change requires long‐term monitoring of multiple ecological parameters. Here, we present the findings of a collaboration between government scientists, local people, park rangers, and academic researchers that provide insights into changes in plant composition, phenology, and growth over 18 yr on Qikiqtaruk‐Herschel Island, Canada. Qikiqtaruk is an important focal research site located at the latitudinal tall shrub line in the western Arctic. This unique ecological monitoring program indicates the following findings: (1) nine days per decade advance of spring phenology, (2) a doubling of average plant canopy height per decade, but no directional change in shrub radial growth, and (3) a doubling of shrub and graminoid abundance and a decrease by one‐half in bare ground cover per decade. Ecological changes are concurrent with satellite‐observed greening and, when integrated, suggest that indirect warming from increased growing season length and active layer depths, rather than warming summer air temperatures alone, could be important drivers of the observed tundra vegetation change. Our results highlight the vital role that long‐term and multi‐parameter ecological monitoring plays in both the detection and attribution of global change.
Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Wiley Deon Arey; Joseph S. Boyle; Haydn J.D. Thomas; Paden Lennie; Samuel McLeod; Edward McLeod; Cameron D. Eckert; Richard R. Gordon; Jakob J. Assmann; Sandra Angers-Blondin; Andrew M. Cunliffe; Meagan M. Grabowski; Gergana N. Daskalova; Ricky Joe; Isla H. Myers-Smith; Anne D. Bjorkman; Anne D. Bjorkman;AbstractThe Arctic tundra is warming rapidly, yet the exact mechanisms linking warming and observed ecological changes are often unclear. Understanding mechanisms of change requires long‐term monitoring of multiple ecological parameters. Here, we present the findings of a collaboration between government scientists, local people, park rangers, and academic researchers that provide insights into changes in plant composition, phenology, and growth over 18 yr on Qikiqtaruk‐Herschel Island, Canada. Qikiqtaruk is an important focal research site located at the latitudinal tall shrub line in the western Arctic. This unique ecological monitoring program indicates the following findings: (1) nine days per decade advance of spring phenology, (2) a doubling of average plant canopy height per decade, but no directional change in shrub radial growth, and (3) a doubling of shrub and graminoid abundance and a decrease by one‐half in bare ground cover per decade. Ecological changes are concurrent with satellite‐observed greening and, when integrated, suggest that indirect warming from increased growing season length and active layer depths, rather than warming summer air temperatures alone, could be important drivers of the observed tundra vegetation change. Our results highlight the vital role that long‐term and multi‐parameter ecological monitoring plays in both the detection and attribution of global change.
Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Wiley Deon Arey; Joseph S. Boyle; Haydn J.D. Thomas; Paden Lennie; Samuel McLeod; Edward McLeod; Cameron D. Eckert; Richard R. Gordon; Jakob J. Assmann; Sandra Angers-Blondin; Andrew M. Cunliffe; Meagan M. Grabowski; Gergana N. Daskalova; Ricky Joe; Isla H. Myers-Smith; Anne D. Bjorkman; Anne D. Bjorkman;AbstractThe Arctic tundra is warming rapidly, yet the exact mechanisms linking warming and observed ecological changes are often unclear. Understanding mechanisms of change requires long‐term monitoring of multiple ecological parameters. Here, we present the findings of a collaboration between government scientists, local people, park rangers, and academic researchers that provide insights into changes in plant composition, phenology, and growth over 18 yr on Qikiqtaruk‐Herschel Island, Canada. Qikiqtaruk is an important focal research site located at the latitudinal tall shrub line in the western Arctic. This unique ecological monitoring program indicates the following findings: (1) nine days per decade advance of spring phenology, (2) a doubling of average plant canopy height per decade, but no directional change in shrub radial growth, and (3) a doubling of shrub and graminoid abundance and a decrease by one‐half in bare ground cover per decade. Ecological changes are concurrent with satellite‐observed greening and, when integrated, suggest that indirect warming from increased growing season length and active layer depths, rather than warming summer air temperatures alone, could be important drivers of the observed tundra vegetation change. Our results highlight the vital role that long‐term and multi‐parameter ecological monitoring plays in both the detection and attribution of global change.
Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Wiley Deon Arey; Joseph S. Boyle; Haydn J.D. Thomas; Paden Lennie; Samuel McLeod; Edward McLeod; Cameron D. Eckert; Richard R. Gordon; Jakob J. Assmann; Sandra Angers-Blondin; Andrew M. Cunliffe; Meagan M. Grabowski; Gergana N. Daskalova; Ricky Joe; Isla H. Myers-Smith; Anne D. Bjorkman; Anne D. Bjorkman;AbstractThe Arctic tundra is warming rapidly, yet the exact mechanisms linking warming and observed ecological changes are often unclear. Understanding mechanisms of change requires long‐term monitoring of multiple ecological parameters. Here, we present the findings of a collaboration between government scientists, local people, park rangers, and academic researchers that provide insights into changes in plant composition, phenology, and growth over 18 yr on Qikiqtaruk‐Herschel Island, Canada. Qikiqtaruk is an important focal research site located at the latitudinal tall shrub line in the western Arctic. This unique ecological monitoring program indicates the following findings: (1) nine days per decade advance of spring phenology, (2) a doubling of average plant canopy height per decade, but no directional change in shrub radial growth, and (3) a doubling of shrub and graminoid abundance and a decrease by one‐half in bare ground cover per decade. Ecological changes are concurrent with satellite‐observed greening and, when integrated, suggest that indirect warming from increased growing season length and active layer depths, rather than warming summer air temperatures alone, could be important drivers of the observed tundra vegetation change. Our results highlight the vital role that long‐term and multi‐parameter ecological monitoring plays in both the detection and attribution of global change.
Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu