- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 PortugalPublisher:Elsevier BV Publicly fundedFunded by:FCT | Centre for Marine Technol...FCT| Centre for Marine Technology and Ocean EngineeringFlorent Thiebaut; Thiago S. Hallak; C. Guedes Soares; Mário J. G. C. Mendes; Mário J. G. C. Mendes; Mojtaba Kamarlouei; José F. Gaspar; M. Calvário;Abstract This paper presents an initial experimental study of wave energy converters concentrically arranged and attached on a floating offshore platform model. The 1:27 scale model, has been designed, built and tested, in two main situations, without and with twelve cone shape wave energy converters. To simulate the power take-off system in each wave energy converter, rotational friction dampers have been installed on the joints of the floaters arms to the platform deck. The experimental results show that the interaction between buoys and platform have a positive effect on the platform heave and pitch motions. However, the reduction in heave and pitch motions of the platform, after installing the wave energy converter array, depends on the damping of the equivalent power take-off system. Thus, the effect of dampers in the motion of buoys is presented to allow an initial understanding of the required damping range of the power take-off system and related control strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 118 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 IrelandPublisher:Elsevier BV Publicly fundedFunded by:Irish Centre for High-End Computing, EC | LiftWECIrish Centre for High-End Computing ,EC| LiftWECAuthors: Ermakov, Andrei; Thiebaut, Florent; Payne, Grégory S.; Ringwood, John V.;Recently conducted analytical assessment of the potential performance of cyclorotor wave energy converters (WECs) have shown that such devices offer the best wave absorption behaviour, if energy capture can be optimised through suitable control. Such claims require additional investigation. This article is dedicated to validation of the control-oriented point vortex model of cyclorotor WECs against numerical and experimental assessments conducted by various research groups. The validation is conducted in terms of the traditional metrics for cyclorotor WECs: (a) cancellation of incoming waves; (b) generation of lift and drag forces (c) mechanical power generation. It is shown that the point vortex model generally confirms the previously conducted analytical assessment of device performance. However, accounting for the influence of the hydrofoil induced wakes decreases performance estimates to some extent. It is also shown that, overall, wave cancellation metrics are more optimistic than actual shaft power generation. Analysis of the lift and drag coefficients, which were derived from experimental data, reveal a range of hydrodynamic and mechanic effects which could influence actual device performance. It has been shown that, due to the complexity of hydrodynamic effects, lift and drag coefficients for the control-oriented model should be considered not only as functions of the Reynolds number and angle of attack, but also related to submergence of the foils and direction of their rotation with respect to the free surface. This method allows us to achieve the best validation against experimental results in terms of generation of tangential and radial forces.
MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2023 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryJournal of Fluids and StructuresArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Fluids and StructuresArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2023.103875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2023 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryJournal of Fluids and StructuresArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Fluids and StructuresArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2023.103875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Elsevier BV Publicly fundedFunded by:IRC, University College Cork, Irish Centre for High-End ComputingIRC ,University College Cork ,Irish Centre for High-End ComputingAuthors: Ken O Connell; Florent Thiebaut; Ger Kelly; Andrew Cashman;handle: 10468/5833
Abstract This paper presents the development of a Computational Fluid Dynamics (CFD) model for a free heaving Oscillating Water Column (OWC) spar buoy with non-linear Power Take Off (PTO). Firstly, a freely heaving barge was applied to a 2D Numerical Wave Tank (NWT), used to validate a 1 Degree Of Freedom (DOF) modelling methodology. Multiple sets of regular waves were used to assess the heave response compared to previous experimental and numerical studies. In parallel, the NWT was extended to 3D where analyses of incident waves have been conducted to ensure accurate waves are portrayed. A PTO boundary condition was created to replicate a non-linear impulse turbine, typically simulated by an orifice plate in scaled models. The PTO boundary was compared and validated using experimental data. Finally, a comprehensive system comprising of the 3D NWT, 1DOF set-up and non-linear PTO allowed the development of a heave-only OWC spar buoy model with a non-linear PTO. Experiments completed by UCC MaREI centre in LIR-NOTF ocean wave basin under FP7 MARINET project is detailed and used to validate the comprehensive model. A range of regular waves were applied and responses of heave and chamber pressures were compared to experimental data, which showed excellent correlation.
Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, FrancePublisher:MDPI AG Publicly fundedFunded by:EC | MARINET2EC| MARINET2Sebastien Gueydon; Frances Judge; Eoin Lyden; Michael O’Shea; Florent Thiebaut; Marc Le Boulluec; Julien Caverne; Jérémy Ohana; Benjamin Bouscasse; Shinwoong Kim; Sandy Day; Saishuai Dai; Jimmy Murphy;doi: 10.3390/jmse9091030
This paper introduces metrics developed for analysing irregular wave test results from the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. While response amplitude operations (RAOs) are a useful tool for assessing device performance in irregular waves, they are not easy to interpret when performing an inter-facility comparison where there are many variables. Metrics that use a single value per test condition rather than an RAO curve are a means of efficiently comparing tests from different basins in a more heuristic manner. In this research, the focus is on using metrics to assess how the platform responds with varying wave height and thrust across different facilities. It is found that the metrics implemented are very useful for extracting global trends across different basins and test conditions.
CORE arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/9/1030/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9091030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/9/1030/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9091030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Spain, Spain, United KingdomPublisher:MDPI AG Publicly fundedFunded by:EC | MARINET2EC| MARINET2Thomas Davey; Javier Sarmiento; Jérémy Ohana; Florent Thiebaut; Sylvain Haquin; Matthieu Weber; Sebastien Gueydon; Frances Judge; Eoin Lyden; Michael O’Shea; Roman Gabl; Laura-Beth Jordan; Martyn Hann; Daming Wang; Keri Collins; Daniel Conley; Deborah Greaves; David M. Ingram; Jimmy Murphy;The EU H2020 MaRINET2 project has a goal to improve the quality, robustness and accuracy of physical modelling and associated testing practices for the offshore renewable energy sector. To support this aim, a round robin scale physical modelling test programme was conducted to deploy a common wave energy converter at four wave basins operated by MaRINET2 partners. Test campaigns were conducted at each facility to a common specification and test matrix, providing the unique opportunity for intercomparison between facilities and working practices. A nonproprietary hinged raft, with a nominal scale of 1:25, was tested under a set of 12 irregular sea states. This allowed for an assessment of power output, hinge angles, mooring loads, and six-degree-of-freedom motions. The key outcome to be concluded from the results is that the facilities performed consistently, with the majority of variation linked to differences in sea state calibration. A variation of 5–10% in mean power was typical and was consistent with the variability observed in the measured significant wave heights. The tank depth (which varied from 2–5 m) showed remarkably little influence on the results, although it is noted that these tests used an aerial mooring system with the geometry unaffected by the tank depth. Similar good agreement was seen in the heave, surge, pitch and hinge angle responses. In order to maintain and improve the consistency across laboratories, we make recommendations on characterising and calibrating the tank environment and stress the importance of the device–facility physical interface (the aerial mooring in this case).
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/9/946/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9090946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 105visibility views 105 download downloads 21 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/9/946/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9090946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 PortugalPublisher:Elsevier BV Publicly fundedFunded by:FCT | Centre for Marine Technol...FCT| Centre for Marine Technology and Ocean EngineeringFlorent Thiebaut; Thiago S. Hallak; C. Guedes Soares; Mário J. G. C. Mendes; Mário J. G. C. Mendes; Mojtaba Kamarlouei; José F. Gaspar; M. Calvário;Abstract This paper presents an initial experimental study of wave energy converters concentrically arranged and attached on a floating offshore platform model. The 1:27 scale model, has been designed, built and tested, in two main situations, without and with twelve cone shape wave energy converters. To simulate the power take-off system in each wave energy converter, rotational friction dampers have been installed on the joints of the floaters arms to the platform deck. The experimental results show that the interaction between buoys and platform have a positive effect on the platform heave and pitch motions. However, the reduction in heave and pitch motions of the platform, after installing the wave energy converter array, depends on the damping of the equivalent power take-off system. Thus, the effect of dampers in the motion of buoys is presented to allow an initial understanding of the required damping range of the power take-off system and related control strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 118 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 IrelandPublisher:Elsevier BV Publicly fundedFunded by:Irish Centre for High-End Computing, EC | LiftWECIrish Centre for High-End Computing ,EC| LiftWECAuthors: Ermakov, Andrei; Thiebaut, Florent; Payne, Grégory S.; Ringwood, John V.;Recently conducted analytical assessment of the potential performance of cyclorotor wave energy converters (WECs) have shown that such devices offer the best wave absorption behaviour, if energy capture can be optimised through suitable control. Such claims require additional investigation. This article is dedicated to validation of the control-oriented point vortex model of cyclorotor WECs against numerical and experimental assessments conducted by various research groups. The validation is conducted in terms of the traditional metrics for cyclorotor WECs: (a) cancellation of incoming waves; (b) generation of lift and drag forces (c) mechanical power generation. It is shown that the point vortex model generally confirms the previously conducted analytical assessment of device performance. However, accounting for the influence of the hydrofoil induced wakes decreases performance estimates to some extent. It is also shown that, overall, wave cancellation metrics are more optimistic than actual shaft power generation. Analysis of the lift and drag coefficients, which were derived from experimental data, reveal a range of hydrodynamic and mechanic effects which could influence actual device performance. It has been shown that, due to the complexity of hydrodynamic effects, lift and drag coefficients for the control-oriented model should be considered not only as functions of the Reynolds number and angle of attack, but also related to submergence of the foils and direction of their rotation with respect to the free surface. This method allows us to achieve the best validation against experimental results in terms of generation of tangential and radial forces.
MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2023 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryJournal of Fluids and StructuresArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Fluids and StructuresArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2023.103875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2023 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryJournal of Fluids and StructuresArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Fluids and StructuresArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2023.103875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Elsevier BV Publicly fundedFunded by:IRC, University College Cork, Irish Centre for High-End ComputingIRC ,University College Cork ,Irish Centre for High-End ComputingAuthors: Ken O Connell; Florent Thiebaut; Ger Kelly; Andrew Cashman;handle: 10468/5833
Abstract This paper presents the development of a Computational Fluid Dynamics (CFD) model for a free heaving Oscillating Water Column (OWC) spar buoy with non-linear Power Take Off (PTO). Firstly, a freely heaving barge was applied to a 2D Numerical Wave Tank (NWT), used to validate a 1 Degree Of Freedom (DOF) modelling methodology. Multiple sets of regular waves were used to assess the heave response compared to previous experimental and numerical studies. In parallel, the NWT was extended to 3D where analyses of incident waves have been conducted to ensure accurate waves are portrayed. A PTO boundary condition was created to replicate a non-linear impulse turbine, typically simulated by an orifice plate in scaled models. The PTO boundary was compared and validated using experimental data. Finally, a comprehensive system comprising of the 3D NWT, 1DOF set-up and non-linear PTO allowed the development of a heave-only OWC spar buoy model with a non-linear PTO. Experiments completed by UCC MaREI centre in LIR-NOTF ocean wave basin under FP7 MARINET project is detailed and used to validate the comprehensive model. A range of regular waves were applied and responses of heave and chamber pressures were compared to experimental data, which showed excellent correlation.
Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, FrancePublisher:MDPI AG Publicly fundedFunded by:EC | MARINET2EC| MARINET2Sebastien Gueydon; Frances Judge; Eoin Lyden; Michael O’Shea; Florent Thiebaut; Marc Le Boulluec; Julien Caverne; Jérémy Ohana; Benjamin Bouscasse; Shinwoong Kim; Sandy Day; Saishuai Dai; Jimmy Murphy;doi: 10.3390/jmse9091030
This paper introduces metrics developed for analysing irregular wave test results from the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. While response amplitude operations (RAOs) are a useful tool for assessing device performance in irregular waves, they are not easy to interpret when performing an inter-facility comparison where there are many variables. Metrics that use a single value per test condition rather than an RAO curve are a means of efficiently comparing tests from different basins in a more heuristic manner. In this research, the focus is on using metrics to assess how the platform responds with varying wave height and thrust across different facilities. It is found that the metrics implemented are very useful for extracting global trends across different basins and test conditions.
CORE arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/9/1030/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9091030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/9/1030/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9091030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Spain, Spain, United KingdomPublisher:MDPI AG Publicly fundedFunded by:EC | MARINET2EC| MARINET2Thomas Davey; Javier Sarmiento; Jérémy Ohana; Florent Thiebaut; Sylvain Haquin; Matthieu Weber; Sebastien Gueydon; Frances Judge; Eoin Lyden; Michael O’Shea; Roman Gabl; Laura-Beth Jordan; Martyn Hann; Daming Wang; Keri Collins; Daniel Conley; Deborah Greaves; David M. Ingram; Jimmy Murphy;The EU H2020 MaRINET2 project has a goal to improve the quality, robustness and accuracy of physical modelling and associated testing practices for the offshore renewable energy sector. To support this aim, a round robin scale physical modelling test programme was conducted to deploy a common wave energy converter at four wave basins operated by MaRINET2 partners. Test campaigns were conducted at each facility to a common specification and test matrix, providing the unique opportunity for intercomparison between facilities and working practices. A nonproprietary hinged raft, with a nominal scale of 1:25, was tested under a set of 12 irregular sea states. This allowed for an assessment of power output, hinge angles, mooring loads, and six-degree-of-freedom motions. The key outcome to be concluded from the results is that the facilities performed consistently, with the majority of variation linked to differences in sea state calibration. A variation of 5–10% in mean power was typical and was consistent with the variability observed in the measured significant wave heights. The tank depth (which varied from 2–5 m) showed remarkably little influence on the results, although it is noted that these tests used an aerial mooring system with the geometry unaffected by the tank depth. Similar good agreement was seen in the heave, surge, pitch and hinge angle responses. In order to maintain and improve the consistency across laboratories, we make recommendations on characterising and calibrating the tank environment and stress the importance of the device–facility physical interface (the aerial mooring in this case).
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/9/946/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9090946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 105visibility views 105 download downloads 21 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/9/946/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9090946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu