- home
- Advanced Search
- Energy Research
- Biology
- Energy Research
- Biology
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 AustraliaPublisher:MDPI AG Simmons, L; Auld, T; Hutton, I; Baker, W J; Shapcott, A;Species endemic to mountains on oceanic islands are subject to a number of existing threats (in particular, invasive species) along with the impacts of a rapidly changing climate. The Lord Howe Island endemic palm Hedyscepe canterburyana is restricted to two mountains above 300 m altitude. Predation by the introduced Black Rat (Rattus rattus) is known to significantly reduce seedling recruitment. We examined the variation in Hedyscepe in terms of genetic variation, morphology, reproductive output and demographic structure, across an altitudinal gradient. We used demographic data to model population persistence under climate change predictions of upward range contraction incorporating long-term climatic records for Lord Howe Island. We also accounted for alternative levels of rat predation into the model to reflect management options for control. We found that Lord Howe Island is getting warmer and drier and quantified the degree of temperature change with altitude (0.9 °C per 100 m). For H. canterburyana, differences in development rates, population structure, reproductive output and population growth rate were identified between altitudes. In contrast, genetic variation was high and did not vary with altitude. There is no evidence of an upward range contraction as was predicted and recruitment was greatest at lower altitudes. Our models predicted slow population decline in the species and that the highest altitude populations are under greatest threat of extinction. Removal of rat predation would significantly enhance future persistence of this species.
Biology arrow_drop_down BiologyOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/2079-7737/1/3/736/pdfData sources: Multidisciplinary Digital Publishing InstituteUSC Research Bank research dataArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biology1030736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Biology arrow_drop_down BiologyOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/2079-7737/1/3/736/pdfData sources: Multidisciplinary Digital Publishing InstituteUSC Research Bank research dataArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biology1030736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 AustraliaPublisher:MDPI AG Simmons, L; Auld, T; Hutton, I; Baker, W J; Shapcott, A;Species endemic to mountains on oceanic islands are subject to a number of existing threats (in particular, invasive species) along with the impacts of a rapidly changing climate. The Lord Howe Island endemic palm Hedyscepe canterburyana is restricted to two mountains above 300 m altitude. Predation by the introduced Black Rat (Rattus rattus) is known to significantly reduce seedling recruitment. We examined the variation in Hedyscepe in terms of genetic variation, morphology, reproductive output and demographic structure, across an altitudinal gradient. We used demographic data to model population persistence under climate change predictions of upward range contraction incorporating long-term climatic records for Lord Howe Island. We also accounted for alternative levels of rat predation into the model to reflect management options for control. We found that Lord Howe Island is getting warmer and drier and quantified the degree of temperature change with altitude (0.9 °C per 100 m). For H. canterburyana, differences in development rates, population structure, reproductive output and population growth rate were identified between altitudes. In contrast, genetic variation was high and did not vary with altitude. There is no evidence of an upward range contraction as was predicted and recruitment was greatest at lower altitudes. Our models predicted slow population decline in the species and that the highest altitude populations are under greatest threat of extinction. Removal of rat predation would significantly enhance future persistence of this species.
Biology arrow_drop_down BiologyOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/2079-7737/1/3/736/pdfData sources: Multidisciplinary Digital Publishing InstituteUSC Research Bank research dataArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biology1030736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Biology arrow_drop_down BiologyOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/2079-7737/1/3/736/pdfData sources: Multidisciplinary Digital Publishing InstituteUSC Research Bank research dataArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biology1030736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu