- home
- Advanced Search
- Energy Research
- 11. Sustainability
- Energy Research
- 11. Sustainability
description Publicationkeyboard_double_arrow_right Article , Preprint 2021Publisher:MDPI AG Funded by:EC | Smart-BEEjSEC| Smart-BEEjSAuthors: Ardak Akhatova; Lukas Kranzl; Fabian Schipfer; Charitha Buddhika Heendeniya;There is an increased interest in the district-scale energy transition within interdisciplinary research community. Agent-based modelling presents a suitable approach to address variety of questions related to policies, technologies, processes, and the different stakeholder roles that can foster such transition. This state-of-the-art review focuses on the application of agent-based modelling for exploring policy interventions that facilitate the decarbonisation (i.e., energy transition) of districts and neighbourhoods while considering stakeholders’ social characteristics and interactions. We systematically select and analyse peer-reviewed literature and discuss the key modelling aspects, such as model purpose, agents and decision-making logic, spatial and temporal aspects, and empirical grounding. The analysis reveals that the most established agent-based models’ focus on innovation diffusion (e.g., adoption of solar panels) and dissemination of energy-saving behaviour among a group of buildings in urban areas. We see a considerable gap in exploring the decisions and interactions of agents other than residential households, such as commercial and even industrial energy consumers (and prosumers). Moreover, measures such as building retrofits and conversion to district energy systems involve many stakeholders and complex interactions between them that up to now have hardly been represented in the agent-based modelling environment.
Energies arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/554/pdfData sources: Sygmahttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0121.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/554/pdfData sources: Sygmahttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0121.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint 2021 NetherlandsPublisher:MDPI AG Funded by:EC | S2BIOMEC| S2BIOMAuthors: Fabian Schipfer; Alexandra Pfeiffer; Ric Hoefnagels;The European Bioeconomy Strategy aims to strengthen and boost biobased sectors, unlocking investments and markets while rapidly deploying local bioeconomies across Europe and improving compliance with environmental and social sustainability goals. Current biomass provision structures and infrastructure might not be able to tap the sustainable potential of forestry-, agricultural residues and biogenic waste envisaged forming the biogenic feedstock base of the Circular Bioeconomy of tomorrow. Therefore, for the present paper, we assess mobilization strategies, their current status, opportunities, and barriers for local low value and heterogenous biomass resources. Based on discussions with bioenergy supply chain experts, we cluster mobilization measures into three assessment levels; the legislative framework, market structures and technological innovation. Scientific literature research on the respective keywords is performed, the European policy landscape mapped, and the results are enriched with anecdotal evidence, especially for recent and running projects and market developments that lack in published track records. We can identify research needs on all three assessment levels. Still, technological development and legislative frameworks are providing support for heterogeneous biomass mobilization. Market creation, however, represents a bottleneck. We provide novel perspectives, how physical- and virtual bio-hubs and crediting stake- and shareholder variety could create added-value based on sustainable primary economic activities and their cascading activities.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Fabian Schipfer; Lukas Kranzl; David Leclère; Leduc Sylvain; Nicklas Forsell; Hugo Valin;In order to reach sustainable development, the EU plans to expand the production of renewable resources and their conversion into food, feed, biobased products and bioenergy. Therefore also advanced biobased products like e.g. polymers are discussed to substitute their fossil based counterparts which are highly relevant commodities in terms of volumes. The present paper aims to assess the magnitudes of possible substitution shares as well as their implications on biomass demand in the EU28. Therefore scenarios are calculated based on a top-down estimation of current fossil based- and a literature analysis on biobased capacities, respective expectations and targets. Demands for biogenic building blocks are derived using conversion efficiencies and finally energy contents of underlying biogenic carbon carriers are calculated which could be deployed either for energy or material utilisation. We find lowest substitution potentials for biobased surfactants and highest for biodegradable polymers as well as potentials in a same order of magnitude for more durable polymers and biobased bitumen. Compared to average literature estimates for moderate and ambitious bioenergy scenarios, material utilisation could reach up to 4% and 11% shares in 2050 in a joint biobased subsector respectively. However, our scenarios are based on relatively poor data availability. Clearer definitions of products and feedstocks are needed, official monitoring has to be implemented, EU wide substitution targets must be set and pre-treatment and conversion technologies have to be introduced and diffused if we want to discuss and trigger climate change mitigation effects of this bioeconomy subsector in the upcoming decades.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Netherlands, Finland, NetherlandsPublisher:Wiley Junginger, Hans Martin; Mai-Moulin, Thuy; Daioglou, Vassilis; Fritsche, Uwe; Guisson, Ruben; Hennig, Christiane; Thrän, Daniela; Heinimö, Jussi; Hess, J. Richard; Lamers, Patrick; Li, Chenlin; Kwant, Kees; Olsson, Olle; Proskurina, Svetlana; Ranta, Tapio; Schipfer, Fabian; Wild, Michael;doi: 10.1002/bbb.1993
AbstractCurrent biomass production and trade volumes for energy and new materials and bio‐chemicals are only a small fraction to achieve the bioenergy levels suggested by many global energy and climate change mitigation scenarios for 2050. However, comprehensive sustainability of large scale biomass production and trading has yet to be secured, and governance of developing biomass markets is a critical issue. Fundamental choices need to be made on how to develop sustainable biomass supply chains and govern sustainable international biomass markets. The aim of this paper is to provide a vision of how widespread trade and deployment of biomass for energy purposes can be integrated with the wider (bio)economy. It provides an overview of past and current trade flows of the main bioenergy products, and discusses the most important drivers and barriers for bioenergy in general, and more specifically the further development of bioenergy trade over the coming years. It discusses the role of bioenergy as part of the bioeconomy and other potential roles; and how it can help to achieve the sustainable development goals. The paper concludes that it is critical to demonstrate innovative and integrated value chains for biofuels, bioproducts, and biopower that can respond with agility to market factors while providing economic, environmental, and societal benefits to international trade and market. Furthermore, flexible biogenic carbon supply nets based on broad feedstock portfolios and multiple energy and material utilization pathways will reduce risks for involved stakeholder and foster the market entry and uptake of various densified biogenic carbon carriers. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Gerald Kalt; Martin Baumann; Christian Lauk; Thomas Kastner; Lukas Kranzl; Fabian Schipfer; Manfred Lexer; Werner Rammer; Andreas Schaumberger; Ernst Schriefl;Abstract The transformation towards a low-carbon bioeconomy until 2050 is one of the main strategic long-term targets of the European Union. This work presents transformation scenarios for the case of Austria with GHG reduction to about 20% of Kyoto baseline. The scenarios are developed with an optimization model integrating the energy sector, land use and biomass flows. Focus is on investigating possible developments in domestic biomass supply and use. Biomass is crucial for (largely) decarbonising the energy system and replacing fossil-based and energyintensive materials. Domestic biomass use (dry mass) increases by 32% in an 'intensive' and 11% in an 'alternative' transformation scenario, while total energy consumption decreases by 40%. Transformation to a low-carbon bioeconomy could be accomplished without additional biomass imports.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2016.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2016.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Lukas Kranzl; Fabian Schipfer;Abstract The European Union plans to shift parts of its economy towards a biobased system commonly referred to as a bioeconomy in order to reduce emissions and fossil fuel dependence. Biomass exhibits lower carbon densities, higher moisture contents, and is more heterogeneous when compared to the feedstock basis of the current economy. In this paper, we simulate generic biomass-to-end-use chains to compare economic performances of the three technologically most advanced pre-treatment options for biogenic raw materials. Exemplary cellulosic biomass feedstocks are computed to be processed to pellets, torrefied pellets and pyrolysis oil based on current data from previous research and demonstration projects. Various distribution options are considered for the resulting densified bioenergy carriers to be finally converted to heat, electricity and liquid biofuels. We find that the discussed densified bioenergy carriers could compete in the existing residential heating market. Furthermore, large-scale conversion facilities like coal co-firing and gasification could profit from cost reductions for torrefied pellets when compared to conventional pellets. To reach commoditisation of these bioenergy carriers as well as full commercialisation of the respective technologies, upscaling would have to start now possibly by establishing a residential heating market based on torrefied pellets where framework conditions are most favourable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2021Publisher:MDPI AG Funded by:EC | Smart-BEEjSEC| Smart-BEEjSAuthors: Ardak Akhatova; Lukas Kranzl; Fabian Schipfer; Charitha Buddhika Heendeniya;There is an increased interest in the district-scale energy transition within interdisciplinary research community. Agent-based modelling presents a suitable approach to address variety of questions related to policies, technologies, processes, and the different stakeholder roles that can foster such transition. This state-of-the-art review focuses on the application of agent-based modelling for exploring policy interventions that facilitate the decarbonisation (i.e., energy transition) of districts and neighbourhoods while considering stakeholders’ social characteristics and interactions. We systematically select and analyse peer-reviewed literature and discuss the key modelling aspects, such as model purpose, agents and decision-making logic, spatial and temporal aspects, and empirical grounding. The analysis reveals that the most established agent-based models’ focus on innovation diffusion (e.g., adoption of solar panels) and dissemination of energy-saving behaviour among a group of buildings in urban areas. We see a considerable gap in exploring the decisions and interactions of agents other than residential households, such as commercial and even industrial energy consumers (and prosumers). Moreover, measures such as building retrofits and conversion to district energy systems involve many stakeholders and complex interactions between them that up to now have hardly been represented in the agent-based modelling environment.
Energies arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/554/pdfData sources: Sygmahttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0121.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/554/pdfData sources: Sygmahttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0121.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint 2021 NetherlandsPublisher:MDPI AG Funded by:EC | S2BIOMEC| S2BIOMAuthors: Fabian Schipfer; Alexandra Pfeiffer; Ric Hoefnagels;The European Bioeconomy Strategy aims to strengthen and boost biobased sectors, unlocking investments and markets while rapidly deploying local bioeconomies across Europe and improving compliance with environmental and social sustainability goals. Current biomass provision structures and infrastructure might not be able to tap the sustainable potential of forestry-, agricultural residues and biogenic waste envisaged forming the biogenic feedstock base of the Circular Bioeconomy of tomorrow. Therefore, for the present paper, we assess mobilization strategies, their current status, opportunities, and barriers for local low value and heterogenous biomass resources. Based on discussions with bioenergy supply chain experts, we cluster mobilization measures into three assessment levels; the legislative framework, market structures and technological innovation. Scientific literature research on the respective keywords is performed, the European policy landscape mapped, and the results are enriched with anecdotal evidence, especially for recent and running projects and market developments that lack in published track records. We can identify research needs on all three assessment levels. Still, technological development and legislative frameworks are providing support for heterogeneous biomass mobilization. Market creation, however, represents a bottleneck. We provide novel perspectives, how physical- and virtual bio-hubs and crediting stake- and shareholder variety could create added-value based on sustainable primary economic activities and their cascading activities.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Fabian Schipfer; Lukas Kranzl; David Leclère; Leduc Sylvain; Nicklas Forsell; Hugo Valin;In order to reach sustainable development, the EU plans to expand the production of renewable resources and their conversion into food, feed, biobased products and bioenergy. Therefore also advanced biobased products like e.g. polymers are discussed to substitute their fossil based counterparts which are highly relevant commodities in terms of volumes. The present paper aims to assess the magnitudes of possible substitution shares as well as their implications on biomass demand in the EU28. Therefore scenarios are calculated based on a top-down estimation of current fossil based- and a literature analysis on biobased capacities, respective expectations and targets. Demands for biogenic building blocks are derived using conversion efficiencies and finally energy contents of underlying biogenic carbon carriers are calculated which could be deployed either for energy or material utilisation. We find lowest substitution potentials for biobased surfactants and highest for biodegradable polymers as well as potentials in a same order of magnitude for more durable polymers and biobased bitumen. Compared to average literature estimates for moderate and ambitious bioenergy scenarios, material utilisation could reach up to 4% and 11% shares in 2050 in a joint biobased subsector respectively. However, our scenarios are based on relatively poor data availability. Clearer definitions of products and feedstocks are needed, official monitoring has to be implemented, EU wide substitution targets must be set and pre-treatment and conversion technologies have to be introduced and diffused if we want to discuss and trigger climate change mitigation effects of this bioeconomy subsector in the upcoming decades.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Netherlands, Finland, NetherlandsPublisher:Wiley Junginger, Hans Martin; Mai-Moulin, Thuy; Daioglou, Vassilis; Fritsche, Uwe; Guisson, Ruben; Hennig, Christiane; Thrän, Daniela; Heinimö, Jussi; Hess, J. Richard; Lamers, Patrick; Li, Chenlin; Kwant, Kees; Olsson, Olle; Proskurina, Svetlana; Ranta, Tapio; Schipfer, Fabian; Wild, Michael;doi: 10.1002/bbb.1993
AbstractCurrent biomass production and trade volumes for energy and new materials and bio‐chemicals are only a small fraction to achieve the bioenergy levels suggested by many global energy and climate change mitigation scenarios for 2050. However, comprehensive sustainability of large scale biomass production and trading has yet to be secured, and governance of developing biomass markets is a critical issue. Fundamental choices need to be made on how to develop sustainable biomass supply chains and govern sustainable international biomass markets. The aim of this paper is to provide a vision of how widespread trade and deployment of biomass for energy purposes can be integrated with the wider (bio)economy. It provides an overview of past and current trade flows of the main bioenergy products, and discusses the most important drivers and barriers for bioenergy in general, and more specifically the further development of bioenergy trade over the coming years. It discusses the role of bioenergy as part of the bioeconomy and other potential roles; and how it can help to achieve the sustainable development goals. The paper concludes that it is critical to demonstrate innovative and integrated value chains for biofuels, bioproducts, and biopower that can respond with agility to market factors while providing economic, environmental, and societal benefits to international trade and market. Furthermore, flexible biogenic carbon supply nets based on broad feedstock portfolios and multiple energy and material utilization pathways will reduce risks for involved stakeholder and foster the market entry and uptake of various densified biogenic carbon carriers. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Gerald Kalt; Martin Baumann; Christian Lauk; Thomas Kastner; Lukas Kranzl; Fabian Schipfer; Manfred Lexer; Werner Rammer; Andreas Schaumberger; Ernst Schriefl;Abstract The transformation towards a low-carbon bioeconomy until 2050 is one of the main strategic long-term targets of the European Union. This work presents transformation scenarios for the case of Austria with GHG reduction to about 20% of Kyoto baseline. The scenarios are developed with an optimization model integrating the energy sector, land use and biomass flows. Focus is on investigating possible developments in domestic biomass supply and use. Biomass is crucial for (largely) decarbonising the energy system and replacing fossil-based and energyintensive materials. Domestic biomass use (dry mass) increases by 32% in an 'intensive' and 11% in an 'alternative' transformation scenario, while total energy consumption decreases by 40%. Transformation to a low-carbon bioeconomy could be accomplished without additional biomass imports.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2016.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2016.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Lukas Kranzl; Fabian Schipfer;Abstract The European Union plans to shift parts of its economy towards a biobased system commonly referred to as a bioeconomy in order to reduce emissions and fossil fuel dependence. Biomass exhibits lower carbon densities, higher moisture contents, and is more heterogeneous when compared to the feedstock basis of the current economy. In this paper, we simulate generic biomass-to-end-use chains to compare economic performances of the three technologically most advanced pre-treatment options for biogenic raw materials. Exemplary cellulosic biomass feedstocks are computed to be processed to pellets, torrefied pellets and pyrolysis oil based on current data from previous research and demonstration projects. Various distribution options are considered for the resulting densified bioenergy carriers to be finally converted to heat, electricity and liquid biofuels. We find that the discussed densified bioenergy carriers could compete in the existing residential heating market. Furthermore, large-scale conversion facilities like coal co-firing and gasification could profit from cost reductions for torrefied pellets when compared to conventional pellets. To reach commoditisation of these bioenergy carriers as well as full commercialisation of the respective technologies, upscaling would have to start now possibly by establishing a residential heating market based on torrefied pellets where framework conditions are most favourable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu