- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Linkage Infrastructure, E..., ARC | Linkage Projects - Grant ...ARC| Discovery Early Career Researcher Award - Grant ID: DE130101084 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE170100219 ,ARC| Linkage Projects - Grant ID: LP160100242Pere Masqué; Pere Masqué; Pere Masqué; Kate Brunt; Madeline Brenker; Saras M. Windecker; Saras M. Windecker; Paul E. Carnell; Jeff Baldock; Peter I. Macreadie;AbstractNontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha−1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha−1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha−1 year−1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year−1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, United States, Canada, Italy, United States, Canada, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedKevin A. Hovel; Oscar Pino; Rod M. Connolly; Meredith S. Diskin; Alistair G. B. Poore; Peter I. Macreadie; Shelby L. Ziegler; Camilla Bertolini; Paige G. Ross; Claudia Kruschel; Torrance C. Hanley; Delbert L. Smee; Brian R. Silliman; Clara M. Hereu; Andrew H. Altieri; Andrew H. Altieri; Mathieu Cusson; Brendan S. Lanham; Bree K. Yednock; J. Emmett Duffy; A. Randall Hughes; Brigitta I. van Tussenbroek; Kristin M. Hultgren; Brent B. Hughes; Midoli Bresch; F. Joel Fodrie; Enrique Lozano-Álvarez; Lane N. Johnston; Michael Rasheed; Jonathan S. Lefcheck; Paul H. York; Nessa E. O'Connor; Kun-Seop Lee; Zachary L. Monteith; Christopher J. Patrick; Andrew D. Olds; Erin Aiello; Jennifer K. O'Leary; Jennifer K. O'Leary; Adriana Vergés; Christopher J. Henderson; Thomas A. Schlacher; Margot Hessing-Lewis; Martin Thiel; Brendan P. Kelaher; Dean S. Janiak; Mallarie E. Yeager; Richard K. F. Unsworth; Ross Whippo; Ross Whippo; Lisandro Benedetti-Cecchi; Augusto A. V. Flores; Olivia J. Graham; Elrika D’Souza; Katrin Reiss; John J. Stachowicz; O. Kennedy Rhoades; O. Kennedy Rhoades; Lindsay C. Gaskins; Matthew A. Whalen; Matthew A. Whalen; Wendel W. Raymond; Paul E. Carnell; Max T. Robinson; Janina Seemann; Teresa Alcoverro; Teresa Alcoverro; Holger Jänes; Fabio Bulleri; Pablo Jorgensen; Francesca Rossi; Stéphanie Cimon; Aaron W. E. Galloway;Significance Consumption transfers energy and materials through food chains and fundamentally influences ecosystem productivity. Therefore, mapping the distribution of consumer feeding intensity is key to understanding how environmental changes influence biodiversity, with consequent effects on trophic transfer and top–down impacts through food webs. Our global comparison of standardized bait consumption in shallow coastal habitats finds a peak in feeding intensity away from the equator that is better explained by the presence of particular consumer families than by latitude or temperature. This study complements recent demonstrations that changes in biodiversity can have similar or larger impacts on ecological processes than those of climate.
Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 165 Powered bymore_vert Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Singapore, United Kingdom, ChilePublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190100058Aaron M. Eger; Ezequiel M. Marzinelli; Rodrigo Beas-Luna; Caitlin O. Blain; Laura K. Blamey; Jarrett E. K. Byrnes; Paul E. Carnell; Chang Geun Choi; Margot Hessing-Lewis; Kwang Young Kim; Naoki H. Kumagai; Julio Lorda; Pippa Moore; Yohei Nakamura; Alejandro Pérez-Matus; Ondine Pontier; Dan Smale; Peter D. Steinberg; Adriana Vergés;AbstractWhile marine kelp forests have provided valuable ecosystem services for millennia, the global ecological and economic value of those services is largely unresolved. Kelp forests are diminishing in many regions worldwide, and efforts to manage these ecosystems are hindered without accurate estimates of the value of the services that kelp forests provide to human societies. Here, we present a global estimate of the ecological and economic potential of three key ecosystem services - fisheries production, nutrient cycling, and carbon removal provided by six major forest forming kelp genera (Ecklonia, Laminaria, Lessonia, Macrocystis, Nereocystis, and Saccharina). Each of these genera creates a potential value of between $64,400 and $147,100/hectare each year. Collectively, they generate between $465 and $562 billion/year worldwide, with an average of $500 billion. These values are primarily driven by fisheries production (mean $29,900, 904 Kg/Ha/year) and nitrogen removal ($73,800, 657 Kg N/Ha/year), though kelp forests are also estimated to sequester 4.91 megatons of carbon from the atmosphere/year highlighting their potential as blue carbon systems for climate change mitigation. These findings highlight the ecological and economic value of kelp forests to society and will facilitate better informed marine management and conservation decisions.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169771Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/291055Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37385-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169771Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/291055Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37385-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Authors: Paul E. Carnell; Maria M. Palacios; Paweł Waryszak; Stacey M. Trevathan-Tackett; +2 AuthorsPaul E. Carnell; Maria M. Palacios; Paweł Waryszak; Stacey M. Trevathan-Tackett; Pere Masqué; Peter I. Macreadie;pmid: 35032938
The restoration of blue carbon ecosystems, such as mangrove forests, is increasingly used as a management tool to mitigate climate change by removing and sequestering atmospheric carbon in the ground. However, estimates of carbon-offset potential are currently based on data from natural mangrove forests, potentially leading to overestimating the carbon-offset potential from restored mangroves. Here, in the first study of its kind, we utilise 210Pb sediment age-dating techniques and greenhouse gas flux measures to estimate blue carbon additionality in restored mangrove forests, ranging from 13 to 35 years old. As expected, mangrove age had a significant effect on carbon additionality and carbon accretion rate, with the older mangrove stands (17 and 35 years old) holding double the total carbon stocks (aboveground + soil stocks; ∼115 tonnes C ha-1) and double the soil sequestration rates (∼3 tonnes C ha-1 yr-1) than the youngest mangrove stand (13 years old). Although soil carbon stocks increased with mangrove age, the aboveground plant stocks were highest in the 17-year-old stand. Mangrove age also had a significant effect on soil carbon fluxes, with the older mangroves (≥17 years) releasing one-fourth of the CH4 emissions, but double the CO2 flux compared to young stands. Our study suggests that the carbon sink capacity of restored mangrove forests increases with age, but stabilises once they mature (e.g., >17 years). This means that by using carbon sequestration and emissions from natural forests, mangrove restoration projects may be overestimating their carbon sequestration potential.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Linkage Infrastructure, E..., ARC | Linkage Projects - Grant ...ARC| Discovery Early Career Researcher Award - Grant ID: DE130101084 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE170100219 ,ARC| Linkage Projects - Grant ID: LP160100242Pere Masqué; Pere Masqué; Pere Masqué; Kate Brunt; Madeline Brenker; Saras M. Windecker; Saras M. Windecker; Paul E. Carnell; Jeff Baldock; Peter I. Macreadie;AbstractNontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha−1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha−1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha−1 year−1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year−1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, United States, Canada, Italy, United States, Canada, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedKevin A. Hovel; Oscar Pino; Rod M. Connolly; Meredith S. Diskin; Alistair G. B. Poore; Peter I. Macreadie; Shelby L. Ziegler; Camilla Bertolini; Paige G. Ross; Claudia Kruschel; Torrance C. Hanley; Delbert L. Smee; Brian R. Silliman; Clara M. Hereu; Andrew H. Altieri; Andrew H. Altieri; Mathieu Cusson; Brendan S. Lanham; Bree K. Yednock; J. Emmett Duffy; A. Randall Hughes; Brigitta I. van Tussenbroek; Kristin M. Hultgren; Brent B. Hughes; Midoli Bresch; F. Joel Fodrie; Enrique Lozano-Álvarez; Lane N. Johnston; Michael Rasheed; Jonathan S. Lefcheck; Paul H. York; Nessa E. O'Connor; Kun-Seop Lee; Zachary L. Monteith; Christopher J. Patrick; Andrew D. Olds; Erin Aiello; Jennifer K. O'Leary; Jennifer K. O'Leary; Adriana Vergés; Christopher J. Henderson; Thomas A. Schlacher; Margot Hessing-Lewis; Martin Thiel; Brendan P. Kelaher; Dean S. Janiak; Mallarie E. Yeager; Richard K. F. Unsworth; Ross Whippo; Ross Whippo; Lisandro Benedetti-Cecchi; Augusto A. V. Flores; Olivia J. Graham; Elrika D’Souza; Katrin Reiss; John J. Stachowicz; O. Kennedy Rhoades; O. Kennedy Rhoades; Lindsay C. Gaskins; Matthew A. Whalen; Matthew A. Whalen; Wendel W. Raymond; Paul E. Carnell; Max T. Robinson; Janina Seemann; Teresa Alcoverro; Teresa Alcoverro; Holger Jänes; Fabio Bulleri; Pablo Jorgensen; Francesca Rossi; Stéphanie Cimon; Aaron W. E. Galloway;Significance Consumption transfers energy and materials through food chains and fundamentally influences ecosystem productivity. Therefore, mapping the distribution of consumer feeding intensity is key to understanding how environmental changes influence biodiversity, with consequent effects on trophic transfer and top–down impacts through food webs. Our global comparison of standardized bait consumption in shallow coastal habitats finds a peak in feeding intensity away from the equator that is better explained by the presence of particular consumer families than by latitude or temperature. This study complements recent demonstrations that changes in biodiversity can have similar or larger impacts on ecological processes than those of climate.
Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 165 Powered bymore_vert Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Singapore, United Kingdom, ChilePublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190100058Aaron M. Eger; Ezequiel M. Marzinelli; Rodrigo Beas-Luna; Caitlin O. Blain; Laura K. Blamey; Jarrett E. K. Byrnes; Paul E. Carnell; Chang Geun Choi; Margot Hessing-Lewis; Kwang Young Kim; Naoki H. Kumagai; Julio Lorda; Pippa Moore; Yohei Nakamura; Alejandro Pérez-Matus; Ondine Pontier; Dan Smale; Peter D. Steinberg; Adriana Vergés;AbstractWhile marine kelp forests have provided valuable ecosystem services for millennia, the global ecological and economic value of those services is largely unresolved. Kelp forests are diminishing in many regions worldwide, and efforts to manage these ecosystems are hindered without accurate estimates of the value of the services that kelp forests provide to human societies. Here, we present a global estimate of the ecological and economic potential of three key ecosystem services - fisheries production, nutrient cycling, and carbon removal provided by six major forest forming kelp genera (Ecklonia, Laminaria, Lessonia, Macrocystis, Nereocystis, and Saccharina). Each of these genera creates a potential value of between $64,400 and $147,100/hectare each year. Collectively, they generate between $465 and $562 billion/year worldwide, with an average of $500 billion. These values are primarily driven by fisheries production (mean $29,900, 904 Kg/Ha/year) and nitrogen removal ($73,800, 657 Kg N/Ha/year), though kelp forests are also estimated to sequester 4.91 megatons of carbon from the atmosphere/year highlighting their potential as blue carbon systems for climate change mitigation. These findings highlight the ecological and economic value of kelp forests to society and will facilitate better informed marine management and conservation decisions.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169771Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/291055Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37385-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169771Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/291055Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37385-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Authors: Paul E. Carnell; Maria M. Palacios; Paweł Waryszak; Stacey M. Trevathan-Tackett; +2 AuthorsPaul E. Carnell; Maria M. Palacios; Paweł Waryszak; Stacey M. Trevathan-Tackett; Pere Masqué; Peter I. Macreadie;pmid: 35032938
The restoration of blue carbon ecosystems, such as mangrove forests, is increasingly used as a management tool to mitigate climate change by removing and sequestering atmospheric carbon in the ground. However, estimates of carbon-offset potential are currently based on data from natural mangrove forests, potentially leading to overestimating the carbon-offset potential from restored mangroves. Here, in the first study of its kind, we utilise 210Pb sediment age-dating techniques and greenhouse gas flux measures to estimate blue carbon additionality in restored mangrove forests, ranging from 13 to 35 years old. As expected, mangrove age had a significant effect on carbon additionality and carbon accretion rate, with the older mangrove stands (17 and 35 years old) holding double the total carbon stocks (aboveground + soil stocks; ∼115 tonnes C ha-1) and double the soil sequestration rates (∼3 tonnes C ha-1 yr-1) than the youngest mangrove stand (13 years old). Although soil carbon stocks increased with mangrove age, the aboveground plant stocks were highest in the 17-year-old stand. Mangrove age also had a significant effect on soil carbon fluxes, with the older mangroves (≥17 years) releasing one-fourth of the CH4 emissions, but double the CO2 flux compared to young stands. Our study suggests that the carbon sink capacity of restored mangrove forests increases with age, but stabilises once they mature (e.g., >17 years). This means that by using carbon sequestration and emissions from natural forests, mangrove restoration projects may be overestimating their carbon sequestration potential.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu