Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
47 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: J. F. Kreider; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE

    A simplified analytical model is developed to determine the energy performance of an underground air tunnel. The model assumes that the air tunnel-ground system reaches periodic and quasi-steady state behavior after some days of operation. The model can predict the air temperature variation along the air tunnel for any hour of the day. It can also determine the daily mean and amplitude of the total cooling/heating effect of the tunnel. Parametric analysis is conducted to determine the effect of tunnel hydraulic diameter and air flow rate on the heat transfer between ground and air inside the tunnel. The model is validated against measured data.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    127
    citations127
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: J. F. Kreider; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE

    A simplified analytical model is developed to determine the energy performance of an underground air tunnel. The model assumes that the air tunnel-ground system reaches periodic and quasi-steady state behavior after some days of operation. The model can predict the air temperature variation along the air tunnel for any hour of the day. It can also determine the daily mean and amplitude of the total cooling/heating effect of the tunnel. Parametric analysis is conducted to determine the effect of tunnel hydraulic diameter and air flow rate on the heat transfer between ground and air inside the tunnel. The model is validated against measured data.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    127
    citations127
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pyeongchan Ihm; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    orcid Donghyun Seo;
    Donghyun Seo
    ORCID
    Harvested from ORCID Public Data File

    Donghyun Seo in OpenAIRE
    Lyool Park;

    Abstract A new electrical lighting and daylighting simulation analysis environment is developed to help designers assess optimal design configurations and operating strategies for electrical lighting fixtures in order to reduce energy use. In this paper, two applications of the simulation environment are presented to optimize the electrical lighting circuiting layouts design and the location of desks within daylight spaces. The results from these applications illustrate how the simulation environment and optimal daylight-base lighting controls can help building and lighting engineers and green building consultants improve the design of lighting and daylighting systems in order to construct and operate high energy performance buildings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    9
    citations9
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pyeongchan Ihm; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    orcid Donghyun Seo;
    Donghyun Seo
    ORCID
    Harvested from ORCID Public Data File

    Donghyun Seo in OpenAIRE
    Lyool Park;

    Abstract A new electrical lighting and daylighting simulation analysis environment is developed to help designers assess optimal design configurations and operating strategies for electrical lighting fixtures in order to reduce energy use. In this paper, two applications of the simulation environment are presented to optimize the electrical lighting circuiting layouts design and the location of desks within daylight spaces. The results from these applications illustrate how the simulation environment and optimal daylight-base lighting controls can help building and lighting engineers and green building consultants improve the design of lighting and daylighting systems in order to construct and operate high energy performance buildings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    9
    citations9
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Pirawas Chuangchid; Pyeonchan Ihm;

    This paper provides a numerical solution for simultaneous heat and moisture transfer within frozen soil beneath slab foundations of refrigerated warehouses. The developed solution is validated using data from experimental tests. A parametric analysis is then performed to determine the impact of slab insulation levels and to estimate the time required to reach steady-state ground-coupled heat transfer conditions. Finally, the solution is utilized to determine an effective soil thermal conductivity that could be used in a purely heat conduction model for ground-coupled heat transfer beneath freezers.

    addClaim
    8
    citations8
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Pirawas Chuangchid; Pyeonchan Ihm;

    This paper provides a numerical solution for simultaneous heat and moisture transfer within frozen soil beneath slab foundations of refrigerated warehouses. The developed solution is validated using data from experimental tests. A parametric analysis is then performed to determine the impact of slab insulation levels and to estimate the time required to reach steady-state ground-coupled heat transfer conditions. Finally, the solution is utilized to determine an effective soil thermal conductivity that could be used in a purely heat conduction model for ground-coupled heat transfer beneath freezers.

    addClaim
    8
    citations8
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Gregor P. Henze;
    Gregor P. Henze
    ORCID
    Harvested from ORCID Public Data File

    Gregor P. Henze in OpenAIRE
    Michael J. Brandemuehl; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE

    Abstract This paper describes simulation-based results of an investigation of a commercial cooling plant with an ice storage system. Various ice storage systems, chiller compressors, and building types were analyzed under four different control strategies. Optimal control as the strategy that minimizes the total operating cost (demand and energy charges) served as a benchmark to assess the relative performance of three conventional controls (chiller-priority, constant-proportion, and storage-priority control) and to determine aspects in need of improvement in order to apply these conventional controls better and to enhance the cost saving potential of ice storage systems. Independent of the non-cooling electrical load profile, it was found that good efficiency of the cooling plant in the icemaking mode and rate structures with strong load-shifting incentives are prerequisites for making cool storage successful. Chillers with poor performance at subfreezing evaporator temperatures require significant on- to off-peak differentials in the energy and demand rates to yield substantial savings. The relative performance benefit of optimal control over conventional controls increases when rate-based load-shifting incentives are weak. With cooling-related electrical loads being large compared to non-cooling loads, all conventional controls improve their performance when slowly recharging during off-peak periods to contain off-peak demand. On-peak demand reduction of storage-priority is near-optimal for many cases. Guidelines are presented to improve the load-shifting performance of chiller-priority and constant-proportion control.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2003 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    71
    citations71
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2003 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Gregor P. Henze;
    Gregor P. Henze
    ORCID
    Harvested from ORCID Public Data File

    Gregor P. Henze in OpenAIRE
    Michael J. Brandemuehl; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE

    Abstract This paper describes simulation-based results of an investigation of a commercial cooling plant with an ice storage system. Various ice storage systems, chiller compressors, and building types were analyzed under four different control strategies. Optimal control as the strategy that minimizes the total operating cost (demand and energy charges) served as a benchmark to assess the relative performance of three conventional controls (chiller-priority, constant-proportion, and storage-priority control) and to determine aspects in need of improvement in order to apply these conventional controls better and to enhance the cost saving potential of ice storage systems. Independent of the non-cooling electrical load profile, it was found that good efficiency of the cooling plant in the icemaking mode and rate structures with strong load-shifting incentives are prerequisites for making cool storage successful. Chillers with poor performance at subfreezing evaporator temperatures require significant on- to off-peak differentials in the energy and demand rates to yield substantial savings. The relative performance benefit of optimal control over conventional controls increases when rate-based load-shifting incentives are weak. With cooling-related electrical loads being large compared to non-cooling loads, all conventional controls improve their performance when slowly recharging during off-peak periods to contain off-peak demand. On-peak demand reduction of storage-priority is near-optimal for many cases. Guidelines are presented to improve the load-shifting performance of chiller-priority and constant-proportion control.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2003 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    71
    citations71
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2003 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE

    An overview of commonly used methodologies based on the artificial intelligence approach is provided with a special emphasis on neural networks, fuzzy logic, and genetic algorithms. A description of selected applications to building energy systems of AI approaches is outlined. In particular, methods using the artificial intelligence approach for the following applications are discussed: Prediction energy use for one building or a set of buildings (served by one utility), Modeling of building envelope heat transfer, Controlling central plants in buildings, and Fault detection and diagnostics for building energy systems.

    addClaim
    58
    citations58
    popularityTop 10%
    influenceTop 1%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE

    An overview of commonly used methodologies based on the artificial intelligence approach is provided with a special emphasis on neural networks, fuzzy logic, and genetic algorithms. A description of selected applications to building energy systems of AI approaches is outlined. In particular, methods using the artificial intelligence approach for the following applications are discussed: Prediction energy use for one building or a set of buildings (served by one utility), Modeling of building envelope heat transfer, Controlling central plants in buildings, and Fault detection and diagnostics for building energy systems.

    addClaim
    58
    citations58
    popularityTop 10%
    influenceTop 1%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: orcid John S. McCartney;
    John S. McCartney
    ORCID
    Harvested from ORCID Public Data File

    John S. McCartney in OpenAIRE
    Khaled Rouissi; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE

    This paper presents a heat transfer model for thermally active drilled-shaft foundations used for heating and cooling buildings. Specifically, this paper presents a numerical approach to evaluate the unsteady temperature distribution within the ground medium surrounding the foundation as well as indoor/outdoor heat fluxes. In particular, a 2-D numerical solution was obtained using the finite difference technique with a purely implicit solution scheme. The results of the sensitivity analysis indicate that the efficiency of the thermo-active foundation can be significantly improved with a proper selection of design parameters including flow velocity, foundation depth, and foundation materials.

    addClaim
    20
    citations20
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: orcid John S. McCartney;
    John S. McCartney
    ORCID
    Harvested from ORCID Public Data File

    John S. McCartney in OpenAIRE
    Khaled Rouissi; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE

    This paper presents a heat transfer model for thermally active drilled-shaft foundations used for heating and cooling buildings. Specifically, this paper presents a numerical approach to evaluate the unsteady temperature distribution within the ground medium surrounding the foundation as well as indoor/outdoor heat fluxes. In particular, a 2-D numerical solution was obtained using the finite difference technique with a purely implicit solution scheme. The results of the sensitivity analysis indicate that the efficiency of the thermo-active foundation can be significantly improved with a proper selection of design parameters including flow velocity, foundation depth, and foundation materials.

    addClaim
    20
    citations20
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramzi Ourghi; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Adnan Al-Anzi;

    This paper provides a simplified analysis method to predict the impact of the shape for an office building on its annual cooling and total energy use. The simplified analysis method is developed based on detailed simulation analyses utilizing several combinations of building geometry, glazing type, glazing area and climate. A direct correlation has been established between relative compactness and total building energy use as well as the cooling energy requirement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    132
    citations132
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramzi Ourghi; orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Adnan Al-Anzi;

    This paper provides a simplified analysis method to predict the impact of the shape for an office building on its annual cooling and total energy use. The simplified analysis method is developed based on detailed simulation analyses utilizing several combinations of building geometry, glazing type, glazing area and climate. A direct correlation has been established between relative compactness and total building energy use as well as the cooling energy requirement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    132
    citations132
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Pyeongchan Ihm; orcid Donghyun Seo;
    Donghyun Seo
    ORCID
    Harvested from ORCID Public Data File

    Donghyun Seo in OpenAIRE

    A new lighting and daylighting control strategy is modeled and evaluated against conventional lighting and daylighting controls. The new lighting and daylighting control strategy can be incorporated in an energy management and control system (EMCS) to operate and control lighting fixtures in any indoor space. The new daylighting control can also be modeled and integrated in detailed building energy simulation tools. Through a validation analysis, it was found that the new control strategy provides more energy savings than conventional daylighting controls. Moreover, the validation analysis has indicated that existing daylighting control simulation analysis tools could overestimate lighting energy savings associated with daylighting controls. Moreover, it was also found that if calculated solar and illuminance data are used instead of measured solar radiation data, the errors in predicting lighting energy use when daylighting controls are utilized can be significant.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Building and Environment
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Building and Environment
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Pyeongchan Ihm; orcid Donghyun Seo;
    Donghyun Seo
    ORCID
    Harvested from ORCID Public Data File

    Donghyun Seo in OpenAIRE

    A new lighting and daylighting control strategy is modeled and evaluated against conventional lighting and daylighting controls. The new lighting and daylighting control strategy can be incorporated in an energy management and control system (EMCS) to operate and control lighting fixtures in any indoor space. The new daylighting control can also be modeled and integrated in detailed building energy simulation tools. Through a validation analysis, it was found that the new control strategy provides more energy savings than conventional daylighting controls. Moreover, the validation analysis has indicated that existing daylighting control simulation analysis tools could overestimate lighting energy savings associated with daylighting controls. Moreover, it was also found that if calculated solar and illuminance data are used instead of measured solar radiation data, the errors in predicting lighting energy use when daylighting controls are utilized can be significant.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Building and Environment
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Building and Environment
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: orcid George Hanna;
    George Hanna
    ORCID
    Harvested from ORCID Public Data File

    George Hanna in OpenAIRE
    orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Mostafa Abd El Mohimen;

    This paper summarizes the results of a simulation analysis to determine the effectiveness of daylighting in reducing electrical energy consumption for office buildings in Egypt. Specifically, the impact on daylighting performance is investigated of window size, building size, daylighting control, and glazing type for three geographical locations in Egypt. It was determined that a window to wall area ratio of 0.20 minimizes the total annual electricity use for office buildings in three Egyptian locations, Cairo, Alexandria, and Aswan. A simplified analysis method is developed based on the analysis results to estimate the annual electrical energy savings attributed to daylighting.

    addClaim
    12
    citations12
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: orcid George Hanna;
    George Hanna
    ORCID
    Harvested from ORCID Public Data File

    George Hanna in OpenAIRE
    orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Mostafa Abd El Mohimen;

    This paper summarizes the results of a simulation analysis to determine the effectiveness of daylighting in reducing electrical energy consumption for office buildings in Egypt. Specifically, the impact on daylighting performance is investigated of window size, building size, daylighting control, and glazing type for three geographical locations in Egypt. It was determined that a window to wall area ratio of 0.20 minimizes the total annual electricity use for office buildings in three Egyptian locations, Cairo, Alexandria, and Aswan. A simplified analysis method is developed based on the analysis results to estimate the annual electrical energy savings attributed to daylighting.

    addClaim
    12
    citations12
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Stephen Morgan;

    Abstract This paper summarizes the results of a series of parametric analyses performed to evaluate the impact of key design and operating conditions on the effectiveness of pre-cooling control strategies for reducing peak demand and overall energy costs for office buildings. The analyses were carried out using EnergyPlus, a whole building energy simulation program. The effects of various parameters were considered in the analysis including building location, mass level, pre-cooling control strategy, and time-of-use utility rate. The results are utilized to develop general guidelines and a simplified analysis method for operators and designers to assess the potential of pre-cooling building thermal mass on reducing energy cost savings strategies for office buildings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Building and Environment
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Building and Environment
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Moncef Krarti;
    Moncef Krarti
    ORCID
    Harvested from ORCID Public Data File

    Moncef Krarti in OpenAIRE
    Stephen Morgan;

    Abstract This paper summarizes the results of a series of parametric analyses performed to evaluate the impact of key design and operating conditions on the effectiveness of pre-cooling control strategies for reducing peak demand and overall energy costs for office buildings. The analyses were carried out using EnergyPlus, a whole building energy simulation program. The effects of various parameters were considered in the analysis including building location, mass level, pre-cooling control strategy, and time-of-use utility rate. The results are utilized to develop general guidelines and a simplified analysis method for operators and designers to assess the potential of pre-cooling building thermal mass on reducing energy cost savings strategies for office buildings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Building and Environment
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Building and Environment
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph