- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Ehsan Taslimi-Renani; S. Hr. Aghay Kaboli; Mostafa Modiri-Delshad; Nasrudin Abd Rahim; +1 AuthorsEhsan Taslimi-Renani; S. Hr. Aghay Kaboli; Mostafa Modiri-Delshad; Nasrudin Abd Rahim; Nasrudin Abd Rahim;Abstract This paper presents backtracking search algorithm (BSA) for solving economic dispatch (ED) problems with considering valve-point loading effects, prohibited operating zones, and multiple fuel options. The proposed method is an evolutionary technique of optimization with simple structure and single control parameter to solve numerical optimization problems. It is a powerful method for effectively exploring the search space of an optimization problem to find the optimal solution within a low computation time. Different test systems with up to 160 generating units have been used to show the performance of BSA to solve ED problems with high nonlinearities. The results are compared with several methods of optimization to verify the high performance of BSA for solving the ED problems. Statistical analysis of the results among 50 independent runs has been carried out to validate the BSA as a highly robust method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.09.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.09.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Authors: Hanieh Borhanazad; Saad Mekhilef; Velappa Gounder Ganapathy; Mostafa Modiri-Delshad; +1 AuthorsHanieh Borhanazad; Saad Mekhilef; Velappa Gounder Ganapathy; Mostafa Modiri-Delshad; Ali Mirtaheri;handle: 1959.3/452181
Access to a reliable source of electricity is a basic need for any community as it can improve the living standards characterized via the improvement of healthcare, education, and the local economy at large. There are two key factors to consider when assessing the appropriateness of a micro-grid system, the cost-effectiveness of the system and the quality of service. The tradeoff between cost and reliability of the system is a major compromise in designing hybrid systems. In this way, optimization of a Hybrid Micro-Grid System (HMGS) is investigated. A hybrid wind/PV system with battery storage and diesel generator is used for this purpose. The power management algorithm is applied to the load, and the Multi-Objective Particle Swarm Optimization (MOPSO) method is used to find the best configuration of the system and for sizing the components. A set of recent hourly wind speed data from three meteorological stations in Iran, namely: Nahavand, Rafsanjan, and Khash, are selected and tested for the optimization of HMGS. Despite design complexity of the aforementioned systems, the results show that the MOPSO optimization model produces appropriate sizing of the components for each location. It is also suggested that the use of HMGS can be considered as a good alternative to promote electrification projects and enhance energy access within remote Iranian areas or other developing countries enjoying the same or similar climatic conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu368 citations 368 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Ehsan Taslimi-Renani; S. Hr. Aghay Kaboli; Mostafa Modiri-Delshad; Nasrudin Abd Rahim; +1 AuthorsEhsan Taslimi-Renani; S. Hr. Aghay Kaboli; Mostafa Modiri-Delshad; Nasrudin Abd Rahim; Nasrudin Abd Rahim;Abstract This paper presents backtracking search algorithm (BSA) for solving economic dispatch (ED) problems with considering valve-point loading effects, prohibited operating zones, and multiple fuel options. The proposed method is an evolutionary technique of optimization with simple structure and single control parameter to solve numerical optimization problems. It is a powerful method for effectively exploring the search space of an optimization problem to find the optimal solution within a low computation time. Different test systems with up to 160 generating units have been used to show the performance of BSA to solve ED problems with high nonlinearities. The results are compared with several methods of optimization to verify the high performance of BSA for solving the ED problems. Statistical analysis of the results among 50 independent runs has been carried out to validate the BSA as a highly robust method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.09.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.09.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Authors: Hanieh Borhanazad; Saad Mekhilef; Velappa Gounder Ganapathy; Mostafa Modiri-Delshad; +1 AuthorsHanieh Borhanazad; Saad Mekhilef; Velappa Gounder Ganapathy; Mostafa Modiri-Delshad; Ali Mirtaheri;handle: 1959.3/452181
Access to a reliable source of electricity is a basic need for any community as it can improve the living standards characterized via the improvement of healthcare, education, and the local economy at large. There are two key factors to consider when assessing the appropriateness of a micro-grid system, the cost-effectiveness of the system and the quality of service. The tradeoff between cost and reliability of the system is a major compromise in designing hybrid systems. In this way, optimization of a Hybrid Micro-Grid System (HMGS) is investigated. A hybrid wind/PV system with battery storage and diesel generator is used for this purpose. The power management algorithm is applied to the load, and the Multi-Objective Particle Swarm Optimization (MOPSO) method is used to find the best configuration of the system and for sizing the components. A set of recent hourly wind speed data from three meteorological stations in Iran, namely: Nahavand, Rafsanjan, and Khash, are selected and tested for the optimization of HMGS. Despite design complexity of the aforementioned systems, the results show that the MOPSO optimization model produces appropriate sizing of the components for each location. It is also suggested that the use of HMGS can be considered as a good alternative to promote electrification projects and enhance energy access within remote Iranian areas or other developing countries enjoying the same or similar climatic conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu368 citations 368 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu