- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Akilu Yunusa-Kaltungo; Meini Su; Patrick Manu; Clara M. Cheung; Alejandro Gallego-Schmid; Raphael Ricardo Zepon Tarpani; Jingyue Hao; Lin Ma;Studies have demonstrated that a minute quantity of graphene is sufficient to boost cement characteristics, but the attainment of good dispersion and uniformity of the resultant graphene-cement mixture remains a challenge. To alleviate these challenges, this study proposes a low-energy powder-to-powder homogeniser for dispersing reasonably large quantities of graphene powder into cement powders. Microscopic analysis of graphene dispersion from two samples (1% and 0.02% graphene) at 5x, 10x and 20x objectives revealed that graphene accounts for 1.3% and 0.09% over the cement area respectively, which is relatively uniform across all selected samples. Furthermore, four different dosages of graphene were used to validate the impacts of various proportions of graphene, i.e., 0%, 0.02%, 0.04% and 0.06% (by mass of cement) on two types of cement (i.e., Portland cement CEM I 52.5 N and Portland cement CEM II 42.5 N) which also revealed compressive strength increases up to 25% at 7 and 28 days.
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2024.136657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2024.136657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Akilu Yunusa-Kaltungo; Meini Su; Patrick Manu; Clara M. Cheung; Alejandro Gallego-Schmid; Raphael Ricardo Zepon Tarpani; Jingyue Hao; Lin Ma;Studies have demonstrated that a minute quantity of graphene is sufficient to boost cement characteristics, but the attainment of good dispersion and uniformity of the resultant graphene-cement mixture remains a challenge. To alleviate these challenges, this study proposes a low-energy powder-to-powder homogeniser for dispersing reasonably large quantities of graphene powder into cement powders. Microscopic analysis of graphene dispersion from two samples (1% and 0.02% graphene) at 5x, 10x and 20x objectives revealed that graphene accounts for 1.3% and 0.09% over the cement area respectively, which is relatively uniform across all selected samples. Furthermore, four different dosages of graphene were used to validate the impacts of various proportions of graphene, i.e., 0%, 0.02%, 0.04% and 0.06% (by mass of cement) on two types of cement (i.e., Portland cement CEM I 52.5 N and Portland cement CEM II 42.5 N) which also revealed compressive strength increases up to 25% at 7 and 28 days.
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2024.136657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2024.136657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Tarpani, Raphael; Miralles-Cuevas, Sara; Gallego Schmid, Alejandro; Cabrera-Reina, Alejandro; +1 AuthorsTarpani, Raphael; Miralles-Cuevas, Sara; Gallego Schmid, Alejandro; Cabrera-Reina, Alejandro; Cornejo-Ponce, Lorena;Abstract Access to sufficient quantities of fresh water is becoming increasingly difficult, especially in dry regions. Moreover, high levels of salinity, arsenic and boron are further limiting the access to quality fresh water in many isolated communities worldwide. This paper evaluates the life cycle environmental impacts of a small multi-effect distillation (MED) plant, treating brackish water with high levels of these metalloids in an isolated location in Northern Chile. The facility currently operates solely with electricity from a diesel generator and heat from a biomass boiler. In order to evaluate the environmental impacts of more sustainable energy options, the implications of the use of solar fields and grid electricity as potential alternatives have been analysed. The results demonstrate that coupling solar fields and grid electricity is the best option, sharply decreasing impact in most categories in comparison to the current operating mode of the plant. This was attributed to the impact savings from reducing/eliminating onsite diesel and biomass combustion, and their associated transportation to the plant. For MED desalination in off-the-grid areas, the use of solar energy is highly recommended as an alternative to complement the use of diesel and biomass, especially if the latter is not nearby the unit. The concentration of arsenic and boron was reduced to below the required standards for irrigation and livestock consumption. The article concludes that the use of solar energy and grid electricity are environmentally beneficial for the production of quality fresh water from brackish water using MED at isolated communities.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Tarpani, Raphael; Miralles-Cuevas, Sara; Gallego Schmid, Alejandro; Cabrera-Reina, Alejandro; +1 AuthorsTarpani, Raphael; Miralles-Cuevas, Sara; Gallego Schmid, Alejandro; Cabrera-Reina, Alejandro; Cornejo-Ponce, Lorena;Abstract Access to sufficient quantities of fresh water is becoming increasingly difficult, especially in dry regions. Moreover, high levels of salinity, arsenic and boron are further limiting the access to quality fresh water in many isolated communities worldwide. This paper evaluates the life cycle environmental impacts of a small multi-effect distillation (MED) plant, treating brackish water with high levels of these metalloids in an isolated location in Northern Chile. The facility currently operates solely with electricity from a diesel generator and heat from a biomass boiler. In order to evaluate the environmental impacts of more sustainable energy options, the implications of the use of solar fields and grid electricity as potential alternatives have been analysed. The results demonstrate that coupling solar fields and grid electricity is the best option, sharply decreasing impact in most categories in comparison to the current operating mode of the plant. This was attributed to the impact savings from reducing/eliminating onsite diesel and biomass combustion, and their associated transportation to the plant. For MED desalination in off-the-grid areas, the use of solar energy is highly recommended as an alternative to complement the use of diesel and biomass, especially if the latter is not nearby the unit. The concentration of arsenic and boron was reduced to below the required standards for irrigation and livestock consumption. The article concludes that the use of solar energy and grid electricity are environmentally beneficial for the production of quality fresh water from brackish water using MED at isolated communities.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | CENTRE FOR SUSTAINABLE EN...UKRI| CENTRE FOR SUSTAINABLE ENERGY USE IN FOOD CHAINSAuthors: Raphael Ricardo Zepon Tarpani; Carolina Alfonsín; Almudena Hospido; Adisa Azapagic;pmid: 32090790
Sewage sludge handling is becoming a concern in Europe due to its increasing amount and the presence of contaminants, such as heavy metals and pharmaceutical and personal care products (PPCPs). Currently, over 70% of sludge in Europe is treated thermally by incineration or used as fertilizer in agriculture. New thermochemical methods are under development and are expected to be implemented in the near future. This paper considers the life cycle environmental impacts of the following five alternatives for sludge handling, taking into account the presence of heavy metals and PPCPs: i) agricultural application of anaerobically digested sludge; ii) agricultural application of composted sludge; iii) incineration; iv) pyrolysis; and v) wet air oxidation. The results suggest that anaerobic digestion with recovery of nutrients and electricity has the lowest environmental impacts in 11 out of 18 categories considered. For the mean to maximum resource recovery, composting is the worst alternative, followed by pyrolysis with lower recovery rates. Agricultural application of anaerobically digested sludge has the highest freshwater ecotoxicity due to heavy metals, unless their concentration is in the lowest range, as found in some European sewage sludge applied on land. Therefore, stricter control of heavy metals in the sludge is needed for this option to limit freshwater ecotoxicity to the levels comparable with the thermal processes. The results also indicate that PPCPs have a negligible contribution to freshwater ecotoxicity when compared to heavy metals in the anaerobically digested sludge. Since thermal processes are currently drawing attention due to their potential benefits, the findings of this work suggest that their adoption is environmentally beneficial only if high resource recovery rates can be achieved.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | CENTRE FOR SUSTAINABLE EN...UKRI| CENTRE FOR SUSTAINABLE ENERGY USE IN FOOD CHAINSAuthors: Raphael Ricardo Zepon Tarpani; Carolina Alfonsín; Almudena Hospido; Adisa Azapagic;pmid: 32090790
Sewage sludge handling is becoming a concern in Europe due to its increasing amount and the presence of contaminants, such as heavy metals and pharmaceutical and personal care products (PPCPs). Currently, over 70% of sludge in Europe is treated thermally by incineration or used as fertilizer in agriculture. New thermochemical methods are under development and are expected to be implemented in the near future. This paper considers the life cycle environmental impacts of the following five alternatives for sludge handling, taking into account the presence of heavy metals and PPCPs: i) agricultural application of anaerobically digested sludge; ii) agricultural application of composted sludge; iii) incineration; iv) pyrolysis; and v) wet air oxidation. The results suggest that anaerobic digestion with recovery of nutrients and electricity has the lowest environmental impacts in 11 out of 18 categories considered. For the mean to maximum resource recovery, composting is the worst alternative, followed by pyrolysis with lower recovery rates. Agricultural application of anaerobically digested sludge has the highest freshwater ecotoxicity due to heavy metals, unless their concentration is in the lowest range, as found in some European sewage sludge applied on land. Therefore, stricter control of heavy metals in the sludge is needed for this option to limit freshwater ecotoxicity to the levels comparable with the thermal processes. The results also indicate that PPCPs have a negligible contribution to freshwater ecotoxicity when compared to heavy metals in the anaerobically digested sludge. Since thermal processes are currently drawing attention due to their potential benefits, the findings of this work suggest that their adoption is environmentally beneficial only if high resource recovery rates can be achieved.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Tarpani, Raphael Ricardo Zepon; Azapagic, Adisa;Abstract Water treated in advanced wastewater treatment plants (WWTPs) could be reused as potable water to address water shortages. Furthermore, sludge from WWTPs can be used to recover nutrients, energy and chemicals. Thus, the role of WWTPs could change from traditional pollution control facilities to sources of freshwater and other valuable resources. However, the economic viability of advanced wastewater and sludge treatment methods aimed at production of potable water and recovery of other resources is currently unknown. To address this gap and inform their future development, this paper considers life cycle costs of the following four wastewater treatment methods: granular activated carbon, nanofiltration, solar photo-Fenton and ozonation. For recovery of resources from sludge, the following options are examined: agricultural application of anaerobically-digested and composted sludge, incineration, pyrolysis and wet air oxidation. Ozonation has the lowest life cycle costs, averaging £112 per 1000 m3 of water treated, followed by nanofiltration at £134. Solar photo-Fenton is the most expensive option with £238/1000 m3. These costs are significantly lower than water desalination and could be competitive in the future with conventional potable water production. For resource recovery from sludge, anaerobic digestion, pyrolysis and wet air oxidation can operate at a profit with the negative overall life cycle costs (-£65, -£291 and -£26/1000 kg dry matter, respectively) if all their recovered products are fully utilised. The next best option is composting with the total life cycle costs of £35/1000 kg dry matter. Incineration is the least preferred alternative with the cost of nearly £54/1000 kg dry matter. Advanced wastewater and sludge treatment would increase the costs of conventional wastewater treatment by 1.5–2.1 times.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.08.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.08.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Tarpani, Raphael Ricardo Zepon; Azapagic, Adisa;Abstract Water treated in advanced wastewater treatment plants (WWTPs) could be reused as potable water to address water shortages. Furthermore, sludge from WWTPs can be used to recover nutrients, energy and chemicals. Thus, the role of WWTPs could change from traditional pollution control facilities to sources of freshwater and other valuable resources. However, the economic viability of advanced wastewater and sludge treatment methods aimed at production of potable water and recovery of other resources is currently unknown. To address this gap and inform their future development, this paper considers life cycle costs of the following four wastewater treatment methods: granular activated carbon, nanofiltration, solar photo-Fenton and ozonation. For recovery of resources from sludge, the following options are examined: agricultural application of anaerobically-digested and composted sludge, incineration, pyrolysis and wet air oxidation. Ozonation has the lowest life cycle costs, averaging £112 per 1000 m3 of water treated, followed by nanofiltration at £134. Solar photo-Fenton is the most expensive option with £238/1000 m3. These costs are significantly lower than water desalination and could be competitive in the future with conventional potable water production. For resource recovery from sludge, anaerobic digestion, pyrolysis and wet air oxidation can operate at a profit with the negative overall life cycle costs (-£65, -£291 and -£26/1000 kg dry matter, respectively) if all their recovered products are fully utilised. The next best option is composting with the total life cycle costs of £35/1000 kg dry matter. Incineration is the least preferred alternative with the cost of nearly £54/1000 kg dry matter. Advanced wastewater and sludge treatment would increase the costs of conventional wastewater treatment by 1.5–2.1 times.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.08.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.08.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Authors: Li, Jingyi; Tarpani, Raphael Ricardo Zepon; Stamford, Laurence; Gallego-Schmid, Alejandro;Geothermal power generation is expected to increase fivefold worldwide by 2040 compared to 2018. The upcoming growth of geothermal power plants (GPPs) requires assessments of its role in tackling climate change and other impacts within complex environmental, economic and social systems. This study presents the first literature review of GPPs, including comparisons among different GPP technologies, based on life cycle sustainability and circular economy perspectives. A total of 76 core literature studies on geothermal-related topics are reviewed, including technology choices, and critically discussed in terms of their environmental, economic, social and circular economy aspects. Firstly, seven life cycle environmental impact indicators (global warming, acidification, eutrophication, human toxicity, ozone depletion, photochemical oxidation, and cumulative energy demand) are compared both within GPP technologies and to other conventional electricity generation technologies (such as coal and hydro). Secondly, economic sustainability is considered via life cycle costing, and the results show that geothermal could be economically competitive when compared to solar photovoltaic (PV), hydro, and even wind energy sources. Thirdly, social aspects are discussed considering 15 articles that evaluated concerns such as public acceptance, technology safety and local employment rate, although none rigorously considered a life cycle approach. Lastly, a total of 12 articles were found linking the circular economy with GPPs and elaborating on some of the ‘9Rs’ framework. To improve the effectiveness of future research, studies should focus on fulfilling major data gaps in literature such as the lack of detailed documentation for specific materials and background process choices in life cycle assessment databases. The development of GPPs can be an important alternative in efforts to decrease climate change impacts and pursue cleaner energy sources in countries where geothermal energy is more easily available.
Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2022.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2022.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Authors: Li, Jingyi; Tarpani, Raphael Ricardo Zepon; Stamford, Laurence; Gallego-Schmid, Alejandro;Geothermal power generation is expected to increase fivefold worldwide by 2040 compared to 2018. The upcoming growth of geothermal power plants (GPPs) requires assessments of its role in tackling climate change and other impacts within complex environmental, economic and social systems. This study presents the first literature review of GPPs, including comparisons among different GPP technologies, based on life cycle sustainability and circular economy perspectives. A total of 76 core literature studies on geothermal-related topics are reviewed, including technology choices, and critically discussed in terms of their environmental, economic, social and circular economy aspects. Firstly, seven life cycle environmental impact indicators (global warming, acidification, eutrophication, human toxicity, ozone depletion, photochemical oxidation, and cumulative energy demand) are compared both within GPP technologies and to other conventional electricity generation technologies (such as coal and hydro). Secondly, economic sustainability is considered via life cycle costing, and the results show that geothermal could be economically competitive when compared to solar photovoltaic (PV), hydro, and even wind energy sources. Thirdly, social aspects are discussed considering 15 articles that evaluated concerns such as public acceptance, technology safety and local employment rate, although none rigorously considered a life cycle approach. Lastly, a total of 12 articles were found linking the circular economy with GPPs and elaborating on some of the ‘9Rs’ framework. To improve the effectiveness of future research, studies should focus on fulfilling major data gaps in literature such as the lack of detailed documentation for specific materials and background process choices in life cycle assessment databases. The development of GPPs can be an important alternative in efforts to decrease climate change impacts and pursue cleaner energy sources in countries where geothermal energy is more easily available.
Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2022.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2022.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Raphael Ricardo Zepon Tarpani; Flávio Rubens Lapolli; María Ángeles Lobo Recio; Alejandro Gallego-Schmid;Abstract Clean water is becoming an increasingly scarce resource, and its availability is already compromised in many cities. Several techniques for increasing urban water availability are under consideration, but how their life cycle environmental impacts compare amongst one other remain largely unknown. For cities in developing countries, which are more susceptive to water shortages, this is particularly true. Furthermore, to directly compare these technologies, they must be evaluated using the same methodological framework. This paper compares, for the first time, the life cycle environmental impacts of the following three techniques: i) seawater desalination by reverse osmosis (SWRO); ii) indirect potable wastewater reuse (IPR) through an upflow anaerobic sludge blanket digestion reactor, oxidation ditch, ozonation, and managed aquifer recharge; and iii) rainwater harvesting (RWH) to substitute drinking water from the local distribution network. These techniques were evaluated in the Brazilian southern city of Florianopolis. Life cycle assessment (LCA) was used to calculate 15 environmental impact categories with the ReCiPe methodology. Variations in electricity consumption according to technical developments, effluent quality, and pumping efficiency were taken into consideration with parametric analysis. Furthermore, a sensitivity analysis was carried out regarding the direct emissions of methane and nitrous oxide during IPR, and the electricity mix. SWRO indicates the highest results for 12 out of the 15 impact categories, and IPR indicates the lowest values in nine categories. Electricity consumption is the main contributor to most impact categories during SWRO and IPR. Out of six categories (including climate change and human toxicity), RWH is the preferable option whilst comparatively also presenting the worst results for water depletion and marine eutrophication, with glass fibre produced for storage tanks being the main contributor. In the climate change potential category, for instance, SWRO, IPR and RWH have mean results of 751, 998, and 591 kg CO2 eq./1000 m3, respectively. However, the sensitivity analysis showed that if direct emissions of CH4 and N2O in IPR are low, then the IPR technique will have better results than the SWRO method, resulting in 710 kg CO2 eq./1000 m3. Additionally, the country electricity mix was found to be highly influential in the environmental impacts, especially for SWRO and IPR. The results obtained from this research will inform stakeholders, particularly those in developing countries, about possibilities of adopting new techniques for increasing water supplies, without comprising the environmental sustainability of these systems.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.125871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.125871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Raphael Ricardo Zepon Tarpani; Flávio Rubens Lapolli; María Ángeles Lobo Recio; Alejandro Gallego-Schmid;Abstract Clean water is becoming an increasingly scarce resource, and its availability is already compromised in many cities. Several techniques for increasing urban water availability are under consideration, but how their life cycle environmental impacts compare amongst one other remain largely unknown. For cities in developing countries, which are more susceptive to water shortages, this is particularly true. Furthermore, to directly compare these technologies, they must be evaluated using the same methodological framework. This paper compares, for the first time, the life cycle environmental impacts of the following three techniques: i) seawater desalination by reverse osmosis (SWRO); ii) indirect potable wastewater reuse (IPR) through an upflow anaerobic sludge blanket digestion reactor, oxidation ditch, ozonation, and managed aquifer recharge; and iii) rainwater harvesting (RWH) to substitute drinking water from the local distribution network. These techniques were evaluated in the Brazilian southern city of Florianopolis. Life cycle assessment (LCA) was used to calculate 15 environmental impact categories with the ReCiPe methodology. Variations in electricity consumption according to technical developments, effluent quality, and pumping efficiency were taken into consideration with parametric analysis. Furthermore, a sensitivity analysis was carried out regarding the direct emissions of methane and nitrous oxide during IPR, and the electricity mix. SWRO indicates the highest results for 12 out of the 15 impact categories, and IPR indicates the lowest values in nine categories. Electricity consumption is the main contributor to most impact categories during SWRO and IPR. Out of six categories (including climate change and human toxicity), RWH is the preferable option whilst comparatively also presenting the worst results for water depletion and marine eutrophication, with glass fibre produced for storage tanks being the main contributor. In the climate change potential category, for instance, SWRO, IPR and RWH have mean results of 751, 998, and 591 kg CO2 eq./1000 m3, respectively. However, the sensitivity analysis showed that if direct emissions of CH4 and N2O in IPR are low, then the IPR technique will have better results than the SWRO method, resulting in 710 kg CO2 eq./1000 m3. Additionally, the country electricity mix was found to be highly influential in the environmental impacts, especially for SWRO and IPR. The results obtained from this research will inform stakeholders, particularly those in developing countries, about possibilities of adopting new techniques for increasing water supplies, without comprising the environmental sustainability of these systems.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.125871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.125871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Akilu Yunusa-Kaltungo; Meini Su; Patrick Manu; Clara M. Cheung; Alejandro Gallego-Schmid; Raphael Ricardo Zepon Tarpani; Jingyue Hao; Lin Ma;Studies have demonstrated that a minute quantity of graphene is sufficient to boost cement characteristics, but the attainment of good dispersion and uniformity of the resultant graphene-cement mixture remains a challenge. To alleviate these challenges, this study proposes a low-energy powder-to-powder homogeniser for dispersing reasonably large quantities of graphene powder into cement powders. Microscopic analysis of graphene dispersion from two samples (1% and 0.02% graphene) at 5x, 10x and 20x objectives revealed that graphene accounts for 1.3% and 0.09% over the cement area respectively, which is relatively uniform across all selected samples. Furthermore, four different dosages of graphene were used to validate the impacts of various proportions of graphene, i.e., 0%, 0.02%, 0.04% and 0.06% (by mass of cement) on two types of cement (i.e., Portland cement CEM I 52.5 N and Portland cement CEM II 42.5 N) which also revealed compressive strength increases up to 25% at 7 and 28 days.
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2024.136657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2024.136657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Akilu Yunusa-Kaltungo; Meini Su; Patrick Manu; Clara M. Cheung; Alejandro Gallego-Schmid; Raphael Ricardo Zepon Tarpani; Jingyue Hao; Lin Ma;Studies have demonstrated that a minute quantity of graphene is sufficient to boost cement characteristics, but the attainment of good dispersion and uniformity of the resultant graphene-cement mixture remains a challenge. To alleviate these challenges, this study proposes a low-energy powder-to-powder homogeniser for dispersing reasonably large quantities of graphene powder into cement powders. Microscopic analysis of graphene dispersion from two samples (1% and 0.02% graphene) at 5x, 10x and 20x objectives revealed that graphene accounts for 1.3% and 0.09% over the cement area respectively, which is relatively uniform across all selected samples. Furthermore, four different dosages of graphene were used to validate the impacts of various proportions of graphene, i.e., 0%, 0.02%, 0.04% and 0.06% (by mass of cement) on two types of cement (i.e., Portland cement CEM I 52.5 N and Portland cement CEM II 42.5 N) which also revealed compressive strength increases up to 25% at 7 and 28 days.
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2024.136657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2024.136657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Tarpani, Raphael; Miralles-Cuevas, Sara; Gallego Schmid, Alejandro; Cabrera-Reina, Alejandro; +1 AuthorsTarpani, Raphael; Miralles-Cuevas, Sara; Gallego Schmid, Alejandro; Cabrera-Reina, Alejandro; Cornejo-Ponce, Lorena;Abstract Access to sufficient quantities of fresh water is becoming increasingly difficult, especially in dry regions. Moreover, high levels of salinity, arsenic and boron are further limiting the access to quality fresh water in many isolated communities worldwide. This paper evaluates the life cycle environmental impacts of a small multi-effect distillation (MED) plant, treating brackish water with high levels of these metalloids in an isolated location in Northern Chile. The facility currently operates solely with electricity from a diesel generator and heat from a biomass boiler. In order to evaluate the environmental impacts of more sustainable energy options, the implications of the use of solar fields and grid electricity as potential alternatives have been analysed. The results demonstrate that coupling solar fields and grid electricity is the best option, sharply decreasing impact in most categories in comparison to the current operating mode of the plant. This was attributed to the impact savings from reducing/eliminating onsite diesel and biomass combustion, and their associated transportation to the plant. For MED desalination in off-the-grid areas, the use of solar energy is highly recommended as an alternative to complement the use of diesel and biomass, especially if the latter is not nearby the unit. The concentration of arsenic and boron was reduced to below the required standards for irrigation and livestock consumption. The article concludes that the use of solar energy and grid electricity are environmentally beneficial for the production of quality fresh water from brackish water using MED at isolated communities.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Tarpani, Raphael; Miralles-Cuevas, Sara; Gallego Schmid, Alejandro; Cabrera-Reina, Alejandro; +1 AuthorsTarpani, Raphael; Miralles-Cuevas, Sara; Gallego Schmid, Alejandro; Cabrera-Reina, Alejandro; Cornejo-Ponce, Lorena;Abstract Access to sufficient quantities of fresh water is becoming increasingly difficult, especially in dry regions. Moreover, high levels of salinity, arsenic and boron are further limiting the access to quality fresh water in many isolated communities worldwide. This paper evaluates the life cycle environmental impacts of a small multi-effect distillation (MED) plant, treating brackish water with high levels of these metalloids in an isolated location in Northern Chile. The facility currently operates solely with electricity from a diesel generator and heat from a biomass boiler. In order to evaluate the environmental impacts of more sustainable energy options, the implications of the use of solar fields and grid electricity as potential alternatives have been analysed. The results demonstrate that coupling solar fields and grid electricity is the best option, sharply decreasing impact in most categories in comparison to the current operating mode of the plant. This was attributed to the impact savings from reducing/eliminating onsite diesel and biomass combustion, and their associated transportation to the plant. For MED desalination in off-the-grid areas, the use of solar energy is highly recommended as an alternative to complement the use of diesel and biomass, especially if the latter is not nearby the unit. The concentration of arsenic and boron was reduced to below the required standards for irrigation and livestock consumption. The article concludes that the use of solar energy and grid electricity are environmentally beneficial for the production of quality fresh water from brackish water using MED at isolated communities.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | CENTRE FOR SUSTAINABLE EN...UKRI| CENTRE FOR SUSTAINABLE ENERGY USE IN FOOD CHAINSAuthors: Raphael Ricardo Zepon Tarpani; Carolina Alfonsín; Almudena Hospido; Adisa Azapagic;pmid: 32090790
Sewage sludge handling is becoming a concern in Europe due to its increasing amount and the presence of contaminants, such as heavy metals and pharmaceutical and personal care products (PPCPs). Currently, over 70% of sludge in Europe is treated thermally by incineration or used as fertilizer in agriculture. New thermochemical methods are under development and are expected to be implemented in the near future. This paper considers the life cycle environmental impacts of the following five alternatives for sludge handling, taking into account the presence of heavy metals and PPCPs: i) agricultural application of anaerobically digested sludge; ii) agricultural application of composted sludge; iii) incineration; iv) pyrolysis; and v) wet air oxidation. The results suggest that anaerobic digestion with recovery of nutrients and electricity has the lowest environmental impacts in 11 out of 18 categories considered. For the mean to maximum resource recovery, composting is the worst alternative, followed by pyrolysis with lower recovery rates. Agricultural application of anaerobically digested sludge has the highest freshwater ecotoxicity due to heavy metals, unless their concentration is in the lowest range, as found in some European sewage sludge applied on land. Therefore, stricter control of heavy metals in the sludge is needed for this option to limit freshwater ecotoxicity to the levels comparable with the thermal processes. The results also indicate that PPCPs have a negligible contribution to freshwater ecotoxicity when compared to heavy metals in the anaerobically digested sludge. Since thermal processes are currently drawing attention due to their potential benefits, the findings of this work suggest that their adoption is environmentally beneficial only if high resource recovery rates can be achieved.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | CENTRE FOR SUSTAINABLE EN...UKRI| CENTRE FOR SUSTAINABLE ENERGY USE IN FOOD CHAINSAuthors: Raphael Ricardo Zepon Tarpani; Carolina Alfonsín; Almudena Hospido; Adisa Azapagic;pmid: 32090790
Sewage sludge handling is becoming a concern in Europe due to its increasing amount and the presence of contaminants, such as heavy metals and pharmaceutical and personal care products (PPCPs). Currently, over 70% of sludge in Europe is treated thermally by incineration or used as fertilizer in agriculture. New thermochemical methods are under development and are expected to be implemented in the near future. This paper considers the life cycle environmental impacts of the following five alternatives for sludge handling, taking into account the presence of heavy metals and PPCPs: i) agricultural application of anaerobically digested sludge; ii) agricultural application of composted sludge; iii) incineration; iv) pyrolysis; and v) wet air oxidation. The results suggest that anaerobic digestion with recovery of nutrients and electricity has the lowest environmental impacts in 11 out of 18 categories considered. For the mean to maximum resource recovery, composting is the worst alternative, followed by pyrolysis with lower recovery rates. Agricultural application of anaerobically digested sludge has the highest freshwater ecotoxicity due to heavy metals, unless their concentration is in the lowest range, as found in some European sewage sludge applied on land. Therefore, stricter control of heavy metals in the sludge is needed for this option to limit freshwater ecotoxicity to the levels comparable with the thermal processes. The results also indicate that PPCPs have a negligible contribution to freshwater ecotoxicity when compared to heavy metals in the anaerobically digested sludge. Since thermal processes are currently drawing attention due to their potential benefits, the findings of this work suggest that their adoption is environmentally beneficial only if high resource recovery rates can be achieved.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Tarpani, Raphael Ricardo Zepon; Azapagic, Adisa;Abstract Water treated in advanced wastewater treatment plants (WWTPs) could be reused as potable water to address water shortages. Furthermore, sludge from WWTPs can be used to recover nutrients, energy and chemicals. Thus, the role of WWTPs could change from traditional pollution control facilities to sources of freshwater and other valuable resources. However, the economic viability of advanced wastewater and sludge treatment methods aimed at production of potable water and recovery of other resources is currently unknown. To address this gap and inform their future development, this paper considers life cycle costs of the following four wastewater treatment methods: granular activated carbon, nanofiltration, solar photo-Fenton and ozonation. For recovery of resources from sludge, the following options are examined: agricultural application of anaerobically-digested and composted sludge, incineration, pyrolysis and wet air oxidation. Ozonation has the lowest life cycle costs, averaging £112 per 1000 m3 of water treated, followed by nanofiltration at £134. Solar photo-Fenton is the most expensive option with £238/1000 m3. These costs are significantly lower than water desalination and could be competitive in the future with conventional potable water production. For resource recovery from sludge, anaerobic digestion, pyrolysis and wet air oxidation can operate at a profit with the negative overall life cycle costs (-£65, -£291 and -£26/1000 kg dry matter, respectively) if all their recovered products are fully utilised. The next best option is composting with the total life cycle costs of £35/1000 kg dry matter. Incineration is the least preferred alternative with the cost of nearly £54/1000 kg dry matter. Advanced wastewater and sludge treatment would increase the costs of conventional wastewater treatment by 1.5–2.1 times.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.08.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.08.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Tarpani, Raphael Ricardo Zepon; Azapagic, Adisa;Abstract Water treated in advanced wastewater treatment plants (WWTPs) could be reused as potable water to address water shortages. Furthermore, sludge from WWTPs can be used to recover nutrients, energy and chemicals. Thus, the role of WWTPs could change from traditional pollution control facilities to sources of freshwater and other valuable resources. However, the economic viability of advanced wastewater and sludge treatment methods aimed at production of potable water and recovery of other resources is currently unknown. To address this gap and inform their future development, this paper considers life cycle costs of the following four wastewater treatment methods: granular activated carbon, nanofiltration, solar photo-Fenton and ozonation. For recovery of resources from sludge, the following options are examined: agricultural application of anaerobically-digested and composted sludge, incineration, pyrolysis and wet air oxidation. Ozonation has the lowest life cycle costs, averaging £112 per 1000 m3 of water treated, followed by nanofiltration at £134. Solar photo-Fenton is the most expensive option with £238/1000 m3. These costs are significantly lower than water desalination and could be competitive in the future with conventional potable water production. For resource recovery from sludge, anaerobic digestion, pyrolysis and wet air oxidation can operate at a profit with the negative overall life cycle costs (-£65, -£291 and -£26/1000 kg dry matter, respectively) if all their recovered products are fully utilised. The next best option is composting with the total life cycle costs of £35/1000 kg dry matter. Incineration is the least preferred alternative with the cost of nearly £54/1000 kg dry matter. Advanced wastewater and sludge treatment would increase the costs of conventional wastewater treatment by 1.5–2.1 times.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.08.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.08.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Authors: Li, Jingyi; Tarpani, Raphael Ricardo Zepon; Stamford, Laurence; Gallego-Schmid, Alejandro;Geothermal power generation is expected to increase fivefold worldwide by 2040 compared to 2018. The upcoming growth of geothermal power plants (GPPs) requires assessments of its role in tackling climate change and other impacts within complex environmental, economic and social systems. This study presents the first literature review of GPPs, including comparisons among different GPP technologies, based on life cycle sustainability and circular economy perspectives. A total of 76 core literature studies on geothermal-related topics are reviewed, including technology choices, and critically discussed in terms of their environmental, economic, social and circular economy aspects. Firstly, seven life cycle environmental impact indicators (global warming, acidification, eutrophication, human toxicity, ozone depletion, photochemical oxidation, and cumulative energy demand) are compared both within GPP technologies and to other conventional electricity generation technologies (such as coal and hydro). Secondly, economic sustainability is considered via life cycle costing, and the results show that geothermal could be economically competitive when compared to solar photovoltaic (PV), hydro, and even wind energy sources. Thirdly, social aspects are discussed considering 15 articles that evaluated concerns such as public acceptance, technology safety and local employment rate, although none rigorously considered a life cycle approach. Lastly, a total of 12 articles were found linking the circular economy with GPPs and elaborating on some of the ‘9Rs’ framework. To improve the effectiveness of future research, studies should focus on fulfilling major data gaps in literature such as the lack of detailed documentation for specific materials and background process choices in life cycle assessment databases. The development of GPPs can be an important alternative in efforts to decrease climate change impacts and pursue cleaner energy sources in countries where geothermal energy is more easily available.
Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2022.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2022.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Authors: Li, Jingyi; Tarpani, Raphael Ricardo Zepon; Stamford, Laurence; Gallego-Schmid, Alejandro;Geothermal power generation is expected to increase fivefold worldwide by 2040 compared to 2018. The upcoming growth of geothermal power plants (GPPs) requires assessments of its role in tackling climate change and other impacts within complex environmental, economic and social systems. This study presents the first literature review of GPPs, including comparisons among different GPP technologies, based on life cycle sustainability and circular economy perspectives. A total of 76 core literature studies on geothermal-related topics are reviewed, including technology choices, and critically discussed in terms of their environmental, economic, social and circular economy aspects. Firstly, seven life cycle environmental impact indicators (global warming, acidification, eutrophication, human toxicity, ozone depletion, photochemical oxidation, and cumulative energy demand) are compared both within GPP technologies and to other conventional electricity generation technologies (such as coal and hydro). Secondly, economic sustainability is considered via life cycle costing, and the results show that geothermal could be economically competitive when compared to solar photovoltaic (PV), hydro, and even wind energy sources. Thirdly, social aspects are discussed considering 15 articles that evaluated concerns such as public acceptance, technology safety and local employment rate, although none rigorously considered a life cycle approach. Lastly, a total of 12 articles were found linking the circular economy with GPPs and elaborating on some of the ‘9Rs’ framework. To improve the effectiveness of future research, studies should focus on fulfilling major data gaps in literature such as the lack of detailed documentation for specific materials and background process choices in life cycle assessment databases. The development of GPPs can be an important alternative in efforts to decrease climate change impacts and pursue cleaner energy sources in countries where geothermal energy is more easily available.
Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2022.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2022.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Raphael Ricardo Zepon Tarpani; Flávio Rubens Lapolli; María Ángeles Lobo Recio; Alejandro Gallego-Schmid;Abstract Clean water is becoming an increasingly scarce resource, and its availability is already compromised in many cities. Several techniques for increasing urban water availability are under consideration, but how their life cycle environmental impacts compare amongst one other remain largely unknown. For cities in developing countries, which are more susceptive to water shortages, this is particularly true. Furthermore, to directly compare these technologies, they must be evaluated using the same methodological framework. This paper compares, for the first time, the life cycle environmental impacts of the following three techniques: i) seawater desalination by reverse osmosis (SWRO); ii) indirect potable wastewater reuse (IPR) through an upflow anaerobic sludge blanket digestion reactor, oxidation ditch, ozonation, and managed aquifer recharge; and iii) rainwater harvesting (RWH) to substitute drinking water from the local distribution network. These techniques were evaluated in the Brazilian southern city of Florianopolis. Life cycle assessment (LCA) was used to calculate 15 environmental impact categories with the ReCiPe methodology. Variations in electricity consumption according to technical developments, effluent quality, and pumping efficiency were taken into consideration with parametric analysis. Furthermore, a sensitivity analysis was carried out regarding the direct emissions of methane and nitrous oxide during IPR, and the electricity mix. SWRO indicates the highest results for 12 out of the 15 impact categories, and IPR indicates the lowest values in nine categories. Electricity consumption is the main contributor to most impact categories during SWRO and IPR. Out of six categories (including climate change and human toxicity), RWH is the preferable option whilst comparatively also presenting the worst results for water depletion and marine eutrophication, with glass fibre produced for storage tanks being the main contributor. In the climate change potential category, for instance, SWRO, IPR and RWH have mean results of 751, 998, and 591 kg CO2 eq./1000 m3, respectively. However, the sensitivity analysis showed that if direct emissions of CH4 and N2O in IPR are low, then the IPR technique will have better results than the SWRO method, resulting in 710 kg CO2 eq./1000 m3. Additionally, the country electricity mix was found to be highly influential in the environmental impacts, especially for SWRO and IPR. The results obtained from this research will inform stakeholders, particularly those in developing countries, about possibilities of adopting new techniques for increasing water supplies, without comprising the environmental sustainability of these systems.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.125871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.125871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Raphael Ricardo Zepon Tarpani; Flávio Rubens Lapolli; María Ángeles Lobo Recio; Alejandro Gallego-Schmid;Abstract Clean water is becoming an increasingly scarce resource, and its availability is already compromised in many cities. Several techniques for increasing urban water availability are under consideration, but how their life cycle environmental impacts compare amongst one other remain largely unknown. For cities in developing countries, which are more susceptive to water shortages, this is particularly true. Furthermore, to directly compare these technologies, they must be evaluated using the same methodological framework. This paper compares, for the first time, the life cycle environmental impacts of the following three techniques: i) seawater desalination by reverse osmosis (SWRO); ii) indirect potable wastewater reuse (IPR) through an upflow anaerobic sludge blanket digestion reactor, oxidation ditch, ozonation, and managed aquifer recharge; and iii) rainwater harvesting (RWH) to substitute drinking water from the local distribution network. These techniques were evaluated in the Brazilian southern city of Florianopolis. Life cycle assessment (LCA) was used to calculate 15 environmental impact categories with the ReCiPe methodology. Variations in electricity consumption according to technical developments, effluent quality, and pumping efficiency were taken into consideration with parametric analysis. Furthermore, a sensitivity analysis was carried out regarding the direct emissions of methane and nitrous oxide during IPR, and the electricity mix. SWRO indicates the highest results for 12 out of the 15 impact categories, and IPR indicates the lowest values in nine categories. Electricity consumption is the main contributor to most impact categories during SWRO and IPR. Out of six categories (including climate change and human toxicity), RWH is the preferable option whilst comparatively also presenting the worst results for water depletion and marine eutrophication, with glass fibre produced for storage tanks being the main contributor. In the climate change potential category, for instance, SWRO, IPR and RWH have mean results of 751, 998, and 591 kg CO2 eq./1000 m3, respectively. However, the sensitivity analysis showed that if direct emissions of CH4 and N2O in IPR are low, then the IPR technique will have better results than the SWRO method, resulting in 710 kg CO2 eq./1000 m3. Additionally, the country electricity mix was found to be highly influential in the environmental impacts, especially for SWRO and IPR. The results obtained from this research will inform stakeholders, particularly those in developing countries, about possibilities of adopting new techniques for increasing water supplies, without comprising the environmental sustainability of these systems.
Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.125871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.125871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu