- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Schäfer, Ralf B.; Bundschuh, Mirco; Rouch, Duncan A.; Szöcs, Eduard; von der Ohe, Peter C.; Pettigrove, Vincent; Schulz, Ralf; Nugegoda, Dayanthi; Kefford, Ben J.;pmid: 21802709
Effects of anthropogenic and environmental stressors on freshwater communities can propagate to ecosystem functions and may in turn impede ecosystem services. We investigated potential shifts in ecosystem functions that provide energy for freshwater ecosystems due to pesticides and salinity in 24 sites in streams of southeast Australia. First, effects on allochthonous organic matter (AOM) breakdown using three different substrates (leaves, cotton strips, wood sticks) in coarse and fine bags were investigated. Second, we examined effects on stream metabolism that delivers information on the ecosystem functions of gross primary production and ecosystem respiration. We found up to a fourfold reduction in AOM breakdown due to exposure to pesticides and salinity, where both stressors contributed approximately equally to the reduction. The effect was additive as, no interaction or correlation between the two stressors was found. Leaf breakdown responded strongly and exclusively to exposure to pesticides and salinity, whereas cotton strip breakdown was less sensitive and responded also to other stressors such as nutrients. No functional redundancy for the effects of pesticides and salinity on leaf breakdown was observed. For wood stick breakdown, no relationship to environmental gradients was found, however, the sample size was lower. We did not detect effects of pesticides or salinity on gross primary production or ecosystem respiration. A reduction in AOM breakdown by pesticides and salinity may impair the ecosystem services of food provision and possibly water purification. Hence, future studies should examine the spatial extent of these effects.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2011.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2011.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Schäfer, Ralf B.; Bundschuh, Mirco; Rouch, Duncan A.; Szöcs, Eduard; von der Ohe, Peter C.; Pettigrove, Vincent; Schulz, Ralf; Nugegoda, Dayanthi; Kefford, Ben J.;pmid: 21802709
Effects of anthropogenic and environmental stressors on freshwater communities can propagate to ecosystem functions and may in turn impede ecosystem services. We investigated potential shifts in ecosystem functions that provide energy for freshwater ecosystems due to pesticides and salinity in 24 sites in streams of southeast Australia. First, effects on allochthonous organic matter (AOM) breakdown using three different substrates (leaves, cotton strips, wood sticks) in coarse and fine bags were investigated. Second, we examined effects on stream metabolism that delivers information on the ecosystem functions of gross primary production and ecosystem respiration. We found up to a fourfold reduction in AOM breakdown due to exposure to pesticides and salinity, where both stressors contributed approximately equally to the reduction. The effect was additive as, no interaction or correlation between the two stressors was found. Leaf breakdown responded strongly and exclusively to exposure to pesticides and salinity, whereas cotton strip breakdown was less sensitive and responded also to other stressors such as nutrients. No functional redundancy for the effects of pesticides and salinity on leaf breakdown was observed. For wood stick breakdown, no relationship to environmental gradients was found, however, the sample size was lower. We did not detect effects of pesticides or salinity on gross primary production or ecosystem respiration. A reduction in AOM breakdown by pesticides and salinity may impair the ecosystem services of food provision and possibly water purification. Hence, future studies should examine the spatial extent of these effects.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2011.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2011.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Cañedo-Argüelles, Miguel; Kefford, Ben J.; Piscart, Christophe; Prat, Narcís; Schäfer, Ralf B.; Schulz, Claus-Jürgen;pmid: 23202646
Secondary salinisation of rivers and streams is a global and growing threat that might be amplified by climate change. It can have many different causes, like irrigation, mining activity or the use of salts as de-icing agents for roads. Freshwater organisms only tolerate certain ranges of water salinity. Therefore secondary salinisation has an impact at the individual, population, community and ecosystem levels, which ultimately leads to a reduction in aquatic biodiversity and compromises the goods and services that rivers and streams provide. Management of secondary salinization should be directed towards integrated catchment strategies (e.g. benefiting from the dilution capacity of the rivers) and identifying threshold salt concentrations to preserve the ecosystem integrity. Future research on the interaction of salinity with other stressors and the impact of salinization on trophic interactions and ecosystem properties is needed and the implications of this issue for human society need to be seriously considered.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2012.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu601 citations 601 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2012.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Cañedo-Argüelles, Miguel; Kefford, Ben J.; Piscart, Christophe; Prat, Narcís; Schäfer, Ralf B.; Schulz, Claus-Jürgen;pmid: 23202646
Secondary salinisation of rivers and streams is a global and growing threat that might be amplified by climate change. It can have many different causes, like irrigation, mining activity or the use of salts as de-icing agents for roads. Freshwater organisms only tolerate certain ranges of water salinity. Therefore secondary salinisation has an impact at the individual, population, community and ecosystem levels, which ultimately leads to a reduction in aquatic biodiversity and compromises the goods and services that rivers and streams provide. Management of secondary salinization should be directed towards integrated catchment strategies (e.g. benefiting from the dilution capacity of the rivers) and identifying threshold salt concentrations to preserve the ecosystem integrity. Future research on the interaction of salinity with other stressors and the impact of salinization on trophic interactions and ecosystem properties is needed and the implications of this issue for human society need to be seriously considered.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2012.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu601 citations 601 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2012.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Ben J. Kefford; Colin D. Butler;pmid: 29595780
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-03795-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-03795-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Ben J. Kefford; Colin D. Butler;pmid: 29595780
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-03795-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-03795-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 01 Mar 2024Publisher:Dryad Kefford, Ben; Dewenter, Beatrice; Shah, Alisha; Hughes, Jane; Poff, LeRoy; Thompson, Ross; Kefford, Ben;# The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis [https://doi.org/10.5061/dryad.9cnp5hqs1](https://doi.org/10.5061/dryad.9cnp5hqs1) **Primary article citation:** Dewenter, B. S., et al. (2024). "The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis." Ecology and Evolution 14(2): e10937. DOI: 10.1002/ece3.10937. **Overview:** The data consists of three thermal traits: critical thermal maximum (CTmax), critical thermal minimum (CTmin), and thermal breadth (TB) of freshwater insect species from two elevation gradients in temperate eastern Australia (southern New South Wales, NSW) and tropical eastern Australia (northern Queensland, QLD). Also included are the associated measures of the thermal regimes at the sites where the freshwater insects were collected. TB = CTmax - CTmin. Also reported are the size of the insects in terms of their head width (mm) and their taxonomy, the site collected from, and its elevation (m above sea level (asl)). ## Description of the data and file structure The variables in the dataset are described in the following table. The locations of the sites (and site information) are given in a second data set (see below). All measures of temperature or thermal traits are in degrees C. Head width refers to the width of the head of the individual insects at their widest point (in mm). NA = no observation (i.e., missing data) and does not imply 0. | Variable | Type | Full description of the variable | | :--------------- | :------------ | :------------------------------------------------------------------------------------------------------------ | | location | Site info | Location of the site either NSW (New South Wales) or QLD (Queensland) both in Australia | | Climate | Site info | Climate of the site either Temperate or Tropical | | elev | Site info | Elevation of the site (m asl) | | Order | Taxonomy | Order of the insect E (Ephemeroptera or mayflies) P (Plecoptera or stoneflies) T (Trichoptera or caddisflies) | | family | Taxonomy | Family of the inset | | genus | Taxonomy | Genus of the insect | | species | Taxonomy | Genus and species of the insect | | n\_CTmin | Thermal trait | Number of individuals that CTmin estimated from (min of 3) | | CTmin\_mean | Thermal trait | Mean estimate of CTmin | | CTmin\_sd | Thermal trait | Standard deviation of CTmin | | CTmin\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that CTmin was estimated from | | CTmin\_sd\_hw | Thermal trait | Standard deviation of head width (mm) of individuals that CTmin was estimated from | | n\_CTmax | Thermal trait | Number of individuals that CTmax estimated from (min of 3) | | CTmax\_mean | Thermal trait | Mean estimate of CTmax | | CTmax\_sd | Thermal trait | Standard deviation of CTmax | | CTmax\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that CTmax was estimated from | | CTmax\_sd\_hw | Thermal trait | Standard deviation of head width (mm) of individuals that CTmax was estimated from | | n\_TB | Thermal trait | Number of individuals that TB estimated from (min of 3) | | TB | Thermal trait | Mean estimate of TB | | TB\_sd | Thermal trait | Standard deviation of TB | | TB\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that TB was estimated from | | TB\_mean\_hw\_sd | Thermal trait | Standard deviation of head width (mm) of individuals that TB was estimated from | A second data files contains the locations of the sites were the species were collected from for determining CTmin, CTmax and TB. This dataset also contains information about the thermal environment of these sites, recorded from data loggers measuring water temperature every 15 min, water quality (chemistry) and habitat. Where water quality variables were below detection limit, they are recorded as 0. Blank cells indicate no data. | Sample Sites | Climate | Either Temperate (for sites in NSW) or Tropical (for sites in QLD) | | :---------------------------------- | :----------------------------------------------------------------------- | :----------------------------------------------------------------- | | Stream | Name of the steam where collections made | | | Catchment | Catchment of the stream, Sn=Snowy River, Mu=Murry River, Ba=Barron River | | | Latitude | Latitude (S) of the site | | | Longitude | Longitude (E) of the site | | | Elevation (m) | Elevation of the site in m above sea level | | | Note | Notes about missing temperature data | | | Barometric Pressure (mm Hg) | Air pressure at the site (when dissolved oxygen measured) | | | 365 days | Annual minimum (°C) | Minimum temperature over a 365 day period | | Annual maximum (°C) | Maximum temperature over a 365 day period | | | Annual temperature range(°C) | Temperature range over a 365 day period | | | Annual mean (°C) | Mean temperature over a 365 day period | | | sd | Temperature standard deviation over a 365 day period | | | Mean diel variability per year (°C) | Mean diel temperature range over a 365 day period | | | sd | Standard elevation temperature diel range over a 365 day period | | | Sampling season | Season | Season Au= autumn, Dr=dry | | Seasonal temperature range (°C) | Temperature range over this season | | | Water Quality | Alkalinity (mg/L) | Alkalinity | | Nitrite (mg/L) | Nitrite | | | Total Phosphorus (mg/L) | Total P | | | Nitrogen Ammonia (mg/L) | Ammonia | | | Nitrate (mg/L) | Nitrate | | | Conductivity (mS/cm) | Electrical conductivity at 25°C | | | pH | pH | | | Dissolved Oxygen (% sat) | Dissolved oxygen | | | Turbidity (NTU) | Turbidity | | | Habitat | Velocity (m/s on bottom of stream) | Water velocity | | Stream depth (cm) | Water depth | | ## Sharing/Access information NA Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales but research rarely considers these temporal scales. The Climate Variability Hypothesis (CVH) provides a conceptual framework for exploring the potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g., diel variability), organisms’ size, and taxonomic identity are also hypothesised to influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms’ ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of freshwater insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (Tbr = CTmax - CTmin). Consistent with the CVH, Tbr tended to increase with increasing annual temperature range. Tbr also increased with body size and Tbr was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We also find some support for a related hypothesis, the Climate Extreme Hypothesis (CEH), particularly for predicting upper thermal limits. We found no evidence that higher annual maximum temperature constrained individuals’ abilities to tolerate a wide range of temperatures. The support for the CVH we document, suggests that temperate organisms may be able to tolerate wider ranges of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9cnp5hqs1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9cnp5hqs1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 01 Mar 2024Publisher:Dryad Kefford, Ben; Dewenter, Beatrice; Shah, Alisha; Hughes, Jane; Poff, LeRoy; Thompson, Ross; Kefford, Ben;# The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis [https://doi.org/10.5061/dryad.9cnp5hqs1](https://doi.org/10.5061/dryad.9cnp5hqs1) **Primary article citation:** Dewenter, B. S., et al. (2024). "The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis." Ecology and Evolution 14(2): e10937. DOI: 10.1002/ece3.10937. **Overview:** The data consists of three thermal traits: critical thermal maximum (CTmax), critical thermal minimum (CTmin), and thermal breadth (TB) of freshwater insect species from two elevation gradients in temperate eastern Australia (southern New South Wales, NSW) and tropical eastern Australia (northern Queensland, QLD). Also included are the associated measures of the thermal regimes at the sites where the freshwater insects were collected. TB = CTmax - CTmin. Also reported are the size of the insects in terms of their head width (mm) and their taxonomy, the site collected from, and its elevation (m above sea level (asl)). ## Description of the data and file structure The variables in the dataset are described in the following table. The locations of the sites (and site information) are given in a second data set (see below). All measures of temperature or thermal traits are in degrees C. Head width refers to the width of the head of the individual insects at their widest point (in mm). NA = no observation (i.e., missing data) and does not imply 0. | Variable | Type | Full description of the variable | | :--------------- | :------------ | :------------------------------------------------------------------------------------------------------------ | | location | Site info | Location of the site either NSW (New South Wales) or QLD (Queensland) both in Australia | | Climate | Site info | Climate of the site either Temperate or Tropical | | elev | Site info | Elevation of the site (m asl) | | Order | Taxonomy | Order of the insect E (Ephemeroptera or mayflies) P (Plecoptera or stoneflies) T (Trichoptera or caddisflies) | | family | Taxonomy | Family of the inset | | genus | Taxonomy | Genus of the insect | | species | Taxonomy | Genus and species of the insect | | n\_CTmin | Thermal trait | Number of individuals that CTmin estimated from (min of 3) | | CTmin\_mean | Thermal trait | Mean estimate of CTmin | | CTmin\_sd | Thermal trait | Standard deviation of CTmin | | CTmin\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that CTmin was estimated from | | CTmin\_sd\_hw | Thermal trait | Standard deviation of head width (mm) of individuals that CTmin was estimated from | | n\_CTmax | Thermal trait | Number of individuals that CTmax estimated from (min of 3) | | CTmax\_mean | Thermal trait | Mean estimate of CTmax | | CTmax\_sd | Thermal trait | Standard deviation of CTmax | | CTmax\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that CTmax was estimated from | | CTmax\_sd\_hw | Thermal trait | Standard deviation of head width (mm) of individuals that CTmax was estimated from | | n\_TB | Thermal trait | Number of individuals that TB estimated from (min of 3) | | TB | Thermal trait | Mean estimate of TB | | TB\_sd | Thermal trait | Standard deviation of TB | | TB\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that TB was estimated from | | TB\_mean\_hw\_sd | Thermal trait | Standard deviation of head width (mm) of individuals that TB was estimated from | A second data files contains the locations of the sites were the species were collected from for determining CTmin, CTmax and TB. This dataset also contains information about the thermal environment of these sites, recorded from data loggers measuring water temperature every 15 min, water quality (chemistry) and habitat. Where water quality variables were below detection limit, they are recorded as 0. Blank cells indicate no data. | Sample Sites | Climate | Either Temperate (for sites in NSW) or Tropical (for sites in QLD) | | :---------------------------------- | :----------------------------------------------------------------------- | :----------------------------------------------------------------- | | Stream | Name of the steam where collections made | | | Catchment | Catchment of the stream, Sn=Snowy River, Mu=Murry River, Ba=Barron River | | | Latitude | Latitude (S) of the site | | | Longitude | Longitude (E) of the site | | | Elevation (m) | Elevation of the site in m above sea level | | | Note | Notes about missing temperature data | | | Barometric Pressure (mm Hg) | Air pressure at the site (when dissolved oxygen measured) | | | 365 days | Annual minimum (°C) | Minimum temperature over a 365 day period | | Annual maximum (°C) | Maximum temperature over a 365 day period | | | Annual temperature range(°C) | Temperature range over a 365 day period | | | Annual mean (°C) | Mean temperature over a 365 day period | | | sd | Temperature standard deviation over a 365 day period | | | Mean diel variability per year (°C) | Mean diel temperature range over a 365 day period | | | sd | Standard elevation temperature diel range over a 365 day period | | | Sampling season | Season | Season Au= autumn, Dr=dry | | Seasonal temperature range (°C) | Temperature range over this season | | | Water Quality | Alkalinity (mg/L) | Alkalinity | | Nitrite (mg/L) | Nitrite | | | Total Phosphorus (mg/L) | Total P | | | Nitrogen Ammonia (mg/L) | Ammonia | | | Nitrate (mg/L) | Nitrate | | | Conductivity (mS/cm) | Electrical conductivity at 25°C | | | pH | pH | | | Dissolved Oxygen (% sat) | Dissolved oxygen | | | Turbidity (NTU) | Turbidity | | | Habitat | Velocity (m/s on bottom of stream) | Water velocity | | Stream depth (cm) | Water depth | | ## Sharing/Access information NA Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales but research rarely considers these temporal scales. The Climate Variability Hypothesis (CVH) provides a conceptual framework for exploring the potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g., diel variability), organisms’ size, and taxonomic identity are also hypothesised to influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms’ ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of freshwater insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (Tbr = CTmax - CTmin). Consistent with the CVH, Tbr tended to increase with increasing annual temperature range. Tbr also increased with body size and Tbr was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We also find some support for a related hypothesis, the Climate Extreme Hypothesis (CEH), particularly for predicting upper thermal limits. We found no evidence that higher annual maximum temperature constrained individuals’ abilities to tolerate a wide range of temperatures. The support for the CVH we document, suggests that temperate organisms may be able to tolerate wider ranges of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9cnp5hqs1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9cnp5hqs1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Authorea, Inc. Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180102016Beatrice Dewenter; Alisha Shah; Jane Hughes; LeRoy Poff; Ross Thompson; Ben Kefford;Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales. Research on species response to climate change has focussed on changes in mean temperature. Thus, there is a need to consider how species will respond to changes in temperature variability. The Climate Variability Hypothesis (CVH) provides a conceptual framework for exploring potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g. diel variability), organisms’ size and taxonomic identity may also influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms’ ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (Tbr = CTmax - CTmin). Consistent with the CVH, Tbr tended to increase with increasing annual temperature range and increasing body size. Tbr was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We found no evidence that higher annual maximum temperature constrained individuals’ abilities to tolerate a wide range of temperatures. The support for the CVH we document, suggests that temperate organisms may be able to tolerate wider range of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.169219473.35826889/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.169219473.35826889/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Authorea, Inc. Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180102016Beatrice Dewenter; Alisha Shah; Jane Hughes; LeRoy Poff; Ross Thompson; Ben Kefford;Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales. Research on species response to climate change has focussed on changes in mean temperature. Thus, there is a need to consider how species will respond to changes in temperature variability. The Climate Variability Hypothesis (CVH) provides a conceptual framework for exploring potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g. diel variability), organisms’ size and taxonomic identity may also influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms’ ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (Tbr = CTmax - CTmin). Consistent with the CVH, Tbr tended to increase with increasing annual temperature range and increasing body size. Tbr was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We found no evidence that higher annual maximum temperature constrained individuals’ abilities to tolerate a wide range of temperatures. The support for the CVH we document, suggests that temperate organisms may be able to tolerate wider range of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.169219473.35826889/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.169219473.35826889/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100100Sauer, Felix G.; Bundschuh, Mirco; Zubrod, Jochen P.; Schaefer, Ralf B.; Thompson, Kristie; Kefford, Ben J.;pmid: 27393920
Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny.
Aquatic Toxicology arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2016Data sources: Universitätsbibliographie, Universität Duisburg-EssenThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2016.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aquatic Toxicology arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2016Data sources: Universitätsbibliographie, Universität Duisburg-EssenThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2016.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100100Sauer, Felix G.; Bundschuh, Mirco; Zubrod, Jochen P.; Schaefer, Ralf B.; Thompson, Kristie; Kefford, Ben J.;pmid: 27393920
Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny.
Aquatic Toxicology arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2016Data sources: Universitätsbibliographie, Universität Duisburg-EssenThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2016.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aquatic Toxicology arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2016Data sources: Universitätsbibliographie, Universität Duisburg-EssenThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2016.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Funded by:NSF | An Integrative Approach t..., ARC | Discovery Projects - Gran...NSF| An Integrative Approach to the Ecological and Evolutionary Causes of Geographic Range Limits ,ARC| Discovery Projects - Grant ID: DP180102016Ben J. Kefford; Cameron K. Ghalambor; Beatrice Dewenter; N. LeRoy Poff; Jane Hughes; Jollene Reich; Ross Thompson;AbstractGlobal warming is increasing mean temperatures and altering temperature variability at multiple temporal scales. To better understand the consequences of changes in thermal variability for ectotherms it is necessary to consider thermal variation at different time scales (i.e., acute, diel, and annual) and the responses of organisms within and across generations. Thermodynamics constrain acute responses to temperature, but within these constraints and over longer time periods, organisms have the scope to adaptively acclimate or evolve. Yet, hypotheses and predictions about responses to future warming tend not to explicitly consider the temporal scale at which temperature varies. Here, focusing on multicellular ectothermic animals, we argue that consideration of multiple processes and constraints associated with various timescales is necessary to better understand how altered thermal variability because of climate change will affect ectotherms.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Funded by:NSF | An Integrative Approach t..., ARC | Discovery Projects - Gran...NSF| An Integrative Approach to the Ecological and Evolutionary Causes of Geographic Range Limits ,ARC| Discovery Projects - Grant ID: DP180102016Ben J. Kefford; Cameron K. Ghalambor; Beatrice Dewenter; N. LeRoy Poff; Jane Hughes; Jollene Reich; Ross Thompson;AbstractGlobal warming is increasing mean temperatures and altering temperature variability at multiple temporal scales. To better understand the consequences of changes in thermal variability for ectotherms it is necessary to consider thermal variation at different time scales (i.e., acute, diel, and annual) and the responses of organisms within and across generations. Thermodynamics constrain acute responses to temperature, but within these constraints and over longer time periods, organisms have the scope to adaptively acclimate or evolve. Yet, hypotheses and predictions about responses to future warming tend not to explicitly consider the temporal scale at which temperature varies. Here, focusing on multicellular ectothermic animals, we argue that consideration of multiple processes and constraints associated with various timescales is necessary to better understand how altered thermal variability because of climate change will affect ectotherms.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100100Authors: Kasey A. Hills; Ross V. Hyne; Ben J. Kefford;Abstract Concentrations of major ions in coal mine discharge waters and unconventional hydrocarbon produced waters derived from coal bed methane (CBM) production, are potentially harmful to freshwater ecosystems. Bicarbonate is a major constituent of produced waters from CBM and coal mining. However, little is known about the relative toxicity of differing ionic proportions, especially bicarbonate, found in these CBM waters. As all freshwater invertebrates tested are more acutely sensitive to sodium bicarbonate (NaHCO3) than sodium chloride (NaCl) or synthetic sea water, we tested the hypotheses that toxicity of CBM waters are driven by bicarbonate concentration, and waters containing a higher proportion of bicarbonate are more toxic to freshwater invertebrates than those with less bicarbonate. We compared the acute (96 h) lethal toxicity to six freshwater invertebrate species of NaHCO3 and two synthetic CBM waters, with ionic proportions representative of water from CBM wells across New South Wales (NSW) and Queensland (Qld), in Australia. The ranking of LC50 values expressed as total salinity was consistent with the hypotheses. However, when toxicity was expressed as bicarbonate concentration, the hypothesis that the toxicity of coal bed waters would be explained by bicarbonate concentration was not well supported, and other ionic components were either ameliorating or exacerbating the NaHCO3 toxicity. Our findings showed NaHCO3 was more toxic than NaCl and that the NaHCO3 proportion of synthetic CBM waters drives toxicity, however other ions are altering the toxicity of bicarbonate.
Ecotoxicology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10646-022-02552-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecotoxicology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10646-022-02552-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100100Authors: Kasey A. Hills; Ross V. Hyne; Ben J. Kefford;Abstract Concentrations of major ions in coal mine discharge waters and unconventional hydrocarbon produced waters derived from coal bed methane (CBM) production, are potentially harmful to freshwater ecosystems. Bicarbonate is a major constituent of produced waters from CBM and coal mining. However, little is known about the relative toxicity of differing ionic proportions, especially bicarbonate, found in these CBM waters. As all freshwater invertebrates tested are more acutely sensitive to sodium bicarbonate (NaHCO3) than sodium chloride (NaCl) or synthetic sea water, we tested the hypotheses that toxicity of CBM waters are driven by bicarbonate concentration, and waters containing a higher proportion of bicarbonate are more toxic to freshwater invertebrates than those with less bicarbonate. We compared the acute (96 h) lethal toxicity to six freshwater invertebrate species of NaHCO3 and two synthetic CBM waters, with ionic proportions representative of water from CBM wells across New South Wales (NSW) and Queensland (Qld), in Australia. The ranking of LC50 values expressed as total salinity was consistent with the hypotheses. However, when toxicity was expressed as bicarbonate concentration, the hypothesis that the toxicity of coal bed waters would be explained by bicarbonate concentration was not well supported, and other ionic components were either ameliorating or exacerbating the NaHCO3 toxicity. Our findings showed NaHCO3 was more toxic than NaCl and that the NaHCO3 proportion of synthetic CBM waters drives toxicity, however other ions are altering the toxicity of bicarbonate.
Ecotoxicology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10646-022-02552-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecotoxicology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10646-022-02552-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Funded by:DFGDFGJochen P. Zubrod; Ben J. Kefford; Josepha Axelsen; Katherine Muñoz; Alexander Feckler; Nina Cedergreen; Katharina Frisch; Diego Fernández; Mirco Bundschuh; Mirco Bundschuh; Eduard Szöcs; Verena C. Schreiner; Ralf B. Schäfer; Jes J. Rasmussen;AbstractDetermining whether the structural and functional stress responses of communities are similar across space and time is paramount for forecasting and extrapolating the consequences of anthropogenic pressures on ecosystems and their services. Stream ecosystems are under high anthropogenic pressure; however, studies have only examined the response of stream communities across large scales over multiple generations. We studied the responses of leaf-associated microbial communities in streams within three European biogeographical regions to chemical stress in a microcosm experiment with multiple cycles of fungicide pollution and resource colonisation. Fungal community composition and the ecosystem function leaf decomposition were measured as response variables. Microbial leaf decomposition showed similar recovery times under environmental levels of fungicide exposure across regions. Initially, the decomposition declined (between 19 and 53%) under fungicide stress and recovered to control levels during the third cycle of pollution and colonisation. Although community composition and its stress response varied between regions, this suggests similar functional community adaptation towards fungicide stress over time. Genetic, epigenetic and physiological adaptations, as well as species turnover, may have contributed to community adaptation but further studies are required to determine if and to which extent these mechanisms are operating. Overall, our findings provide the first evidence of a similar functional response of microbial leaf decomposition to chemical stress across space and time.
Scientific Reports arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35397-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Scientific Reports arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35397-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Funded by:DFGDFGJochen P. Zubrod; Ben J. Kefford; Josepha Axelsen; Katherine Muñoz; Alexander Feckler; Nina Cedergreen; Katharina Frisch; Diego Fernández; Mirco Bundschuh; Mirco Bundschuh; Eduard Szöcs; Verena C. Schreiner; Ralf B. Schäfer; Jes J. Rasmussen;AbstractDetermining whether the structural and functional stress responses of communities are similar across space and time is paramount for forecasting and extrapolating the consequences of anthropogenic pressures on ecosystems and their services. Stream ecosystems are under high anthropogenic pressure; however, studies have only examined the response of stream communities across large scales over multiple generations. We studied the responses of leaf-associated microbial communities in streams within three European biogeographical regions to chemical stress in a microcosm experiment with multiple cycles of fungicide pollution and resource colonisation. Fungal community composition and the ecosystem function leaf decomposition were measured as response variables. Microbial leaf decomposition showed similar recovery times under environmental levels of fungicide exposure across regions. Initially, the decomposition declined (between 19 and 53%) under fungicide stress and recovered to control levels during the third cycle of pollution and colonisation. Although community composition and its stress response varied between regions, this suggests similar functional community adaptation towards fungicide stress over time. Genetic, epigenetic and physiological adaptations, as well as species turnover, may have contributed to community adaptation but further studies are required to determine if and to which extent these mechanisms are operating. Overall, our findings provide the first evidence of a similar functional response of microbial leaf decomposition to chemical stress across space and time.
Scientific Reports arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35397-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Scientific Reports arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35397-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Schäfer, Ralf B.; Bundschuh, Mirco; Rouch, Duncan A.; Szöcs, Eduard; von der Ohe, Peter C.; Pettigrove, Vincent; Schulz, Ralf; Nugegoda, Dayanthi; Kefford, Ben J.;pmid: 21802709
Effects of anthropogenic and environmental stressors on freshwater communities can propagate to ecosystem functions and may in turn impede ecosystem services. We investigated potential shifts in ecosystem functions that provide energy for freshwater ecosystems due to pesticides and salinity in 24 sites in streams of southeast Australia. First, effects on allochthonous organic matter (AOM) breakdown using three different substrates (leaves, cotton strips, wood sticks) in coarse and fine bags were investigated. Second, we examined effects on stream metabolism that delivers information on the ecosystem functions of gross primary production and ecosystem respiration. We found up to a fourfold reduction in AOM breakdown due to exposure to pesticides and salinity, where both stressors contributed approximately equally to the reduction. The effect was additive as, no interaction or correlation between the two stressors was found. Leaf breakdown responded strongly and exclusively to exposure to pesticides and salinity, whereas cotton strip breakdown was less sensitive and responded also to other stressors such as nutrients. No functional redundancy for the effects of pesticides and salinity on leaf breakdown was observed. For wood stick breakdown, no relationship to environmental gradients was found, however, the sample size was lower. We did not detect effects of pesticides or salinity on gross primary production or ecosystem respiration. A reduction in AOM breakdown by pesticides and salinity may impair the ecosystem services of food provision and possibly water purification. Hence, future studies should examine the spatial extent of these effects.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2011.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2011.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Schäfer, Ralf B.; Bundschuh, Mirco; Rouch, Duncan A.; Szöcs, Eduard; von der Ohe, Peter C.; Pettigrove, Vincent; Schulz, Ralf; Nugegoda, Dayanthi; Kefford, Ben J.;pmid: 21802709
Effects of anthropogenic and environmental stressors on freshwater communities can propagate to ecosystem functions and may in turn impede ecosystem services. We investigated potential shifts in ecosystem functions that provide energy for freshwater ecosystems due to pesticides and salinity in 24 sites in streams of southeast Australia. First, effects on allochthonous organic matter (AOM) breakdown using three different substrates (leaves, cotton strips, wood sticks) in coarse and fine bags were investigated. Second, we examined effects on stream metabolism that delivers information on the ecosystem functions of gross primary production and ecosystem respiration. We found up to a fourfold reduction in AOM breakdown due to exposure to pesticides and salinity, where both stressors contributed approximately equally to the reduction. The effect was additive as, no interaction or correlation between the two stressors was found. Leaf breakdown responded strongly and exclusively to exposure to pesticides and salinity, whereas cotton strip breakdown was less sensitive and responded also to other stressors such as nutrients. No functional redundancy for the effects of pesticides and salinity on leaf breakdown was observed. For wood stick breakdown, no relationship to environmental gradients was found, however, the sample size was lower. We did not detect effects of pesticides or salinity on gross primary production or ecosystem respiration. A reduction in AOM breakdown by pesticides and salinity may impair the ecosystem services of food provision and possibly water purification. Hence, future studies should examine the spatial extent of these effects.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2011.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2011.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Cañedo-Argüelles, Miguel; Kefford, Ben J.; Piscart, Christophe; Prat, Narcís; Schäfer, Ralf B.; Schulz, Claus-Jürgen;pmid: 23202646
Secondary salinisation of rivers and streams is a global and growing threat that might be amplified by climate change. It can have many different causes, like irrigation, mining activity or the use of salts as de-icing agents for roads. Freshwater organisms only tolerate certain ranges of water salinity. Therefore secondary salinisation has an impact at the individual, population, community and ecosystem levels, which ultimately leads to a reduction in aquatic biodiversity and compromises the goods and services that rivers and streams provide. Management of secondary salinization should be directed towards integrated catchment strategies (e.g. benefiting from the dilution capacity of the rivers) and identifying threshold salt concentrations to preserve the ecosystem integrity. Future research on the interaction of salinity with other stressors and the impact of salinization on trophic interactions and ecosystem properties is needed and the implications of this issue for human society need to be seriously considered.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2012.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu601 citations 601 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2012.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Cañedo-Argüelles, Miguel; Kefford, Ben J.; Piscart, Christophe; Prat, Narcís; Schäfer, Ralf B.; Schulz, Claus-Jürgen;pmid: 23202646
Secondary salinisation of rivers and streams is a global and growing threat that might be amplified by climate change. It can have many different causes, like irrigation, mining activity or the use of salts as de-icing agents for roads. Freshwater organisms only tolerate certain ranges of water salinity. Therefore secondary salinisation has an impact at the individual, population, community and ecosystem levels, which ultimately leads to a reduction in aquatic biodiversity and compromises the goods and services that rivers and streams provide. Management of secondary salinization should be directed towards integrated catchment strategies (e.g. benefiting from the dilution capacity of the rivers) and identifying threshold salt concentrations to preserve the ecosystem integrity. Future research on the interaction of salinity with other stressors and the impact of salinization on trophic interactions and ecosystem properties is needed and the implications of this issue for human society need to be seriously considered.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2012.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu601 citations 601 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2012.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Ben J. Kefford; Colin D. Butler;pmid: 29595780
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-03795-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-03795-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Ben J. Kefford; Colin D. Butler;pmid: 29595780
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-03795-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-03795-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 01 Mar 2024Publisher:Dryad Kefford, Ben; Dewenter, Beatrice; Shah, Alisha; Hughes, Jane; Poff, LeRoy; Thompson, Ross; Kefford, Ben;# The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis [https://doi.org/10.5061/dryad.9cnp5hqs1](https://doi.org/10.5061/dryad.9cnp5hqs1) **Primary article citation:** Dewenter, B. S., et al. (2024). "The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis." Ecology and Evolution 14(2): e10937. DOI: 10.1002/ece3.10937. **Overview:** The data consists of three thermal traits: critical thermal maximum (CTmax), critical thermal minimum (CTmin), and thermal breadth (TB) of freshwater insect species from two elevation gradients in temperate eastern Australia (southern New South Wales, NSW) and tropical eastern Australia (northern Queensland, QLD). Also included are the associated measures of the thermal regimes at the sites where the freshwater insects were collected. TB = CTmax - CTmin. Also reported are the size of the insects in terms of their head width (mm) and their taxonomy, the site collected from, and its elevation (m above sea level (asl)). ## Description of the data and file structure The variables in the dataset are described in the following table. The locations of the sites (and site information) are given in a second data set (see below). All measures of temperature or thermal traits are in degrees C. Head width refers to the width of the head of the individual insects at their widest point (in mm). NA = no observation (i.e., missing data) and does not imply 0. | Variable | Type | Full description of the variable | | :--------------- | :------------ | :------------------------------------------------------------------------------------------------------------ | | location | Site info | Location of the site either NSW (New South Wales) or QLD (Queensland) both in Australia | | Climate | Site info | Climate of the site either Temperate or Tropical | | elev | Site info | Elevation of the site (m asl) | | Order | Taxonomy | Order of the insect E (Ephemeroptera or mayflies) P (Plecoptera or stoneflies) T (Trichoptera or caddisflies) | | family | Taxonomy | Family of the inset | | genus | Taxonomy | Genus of the insect | | species | Taxonomy | Genus and species of the insect | | n\_CTmin | Thermal trait | Number of individuals that CTmin estimated from (min of 3) | | CTmin\_mean | Thermal trait | Mean estimate of CTmin | | CTmin\_sd | Thermal trait | Standard deviation of CTmin | | CTmin\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that CTmin was estimated from | | CTmin\_sd\_hw | Thermal trait | Standard deviation of head width (mm) of individuals that CTmin was estimated from | | n\_CTmax | Thermal trait | Number of individuals that CTmax estimated from (min of 3) | | CTmax\_mean | Thermal trait | Mean estimate of CTmax | | CTmax\_sd | Thermal trait | Standard deviation of CTmax | | CTmax\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that CTmax was estimated from | | CTmax\_sd\_hw | Thermal trait | Standard deviation of head width (mm) of individuals that CTmax was estimated from | | n\_TB | Thermal trait | Number of individuals that TB estimated from (min of 3) | | TB | Thermal trait | Mean estimate of TB | | TB\_sd | Thermal trait | Standard deviation of TB | | TB\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that TB was estimated from | | TB\_mean\_hw\_sd | Thermal trait | Standard deviation of head width (mm) of individuals that TB was estimated from | A second data files contains the locations of the sites were the species were collected from for determining CTmin, CTmax and TB. This dataset also contains information about the thermal environment of these sites, recorded from data loggers measuring water temperature every 15 min, water quality (chemistry) and habitat. Where water quality variables were below detection limit, they are recorded as 0. Blank cells indicate no data. | Sample Sites | Climate | Either Temperate (for sites in NSW) or Tropical (for sites in QLD) | | :---------------------------------- | :----------------------------------------------------------------------- | :----------------------------------------------------------------- | | Stream | Name of the steam where collections made | | | Catchment | Catchment of the stream, Sn=Snowy River, Mu=Murry River, Ba=Barron River | | | Latitude | Latitude (S) of the site | | | Longitude | Longitude (E) of the site | | | Elevation (m) | Elevation of the site in m above sea level | | | Note | Notes about missing temperature data | | | Barometric Pressure (mm Hg) | Air pressure at the site (when dissolved oxygen measured) | | | 365 days | Annual minimum (°C) | Minimum temperature over a 365 day period | | Annual maximum (°C) | Maximum temperature over a 365 day period | | | Annual temperature range(°C) | Temperature range over a 365 day period | | | Annual mean (°C) | Mean temperature over a 365 day period | | | sd | Temperature standard deviation over a 365 day period | | | Mean diel variability per year (°C) | Mean diel temperature range over a 365 day period | | | sd | Standard elevation temperature diel range over a 365 day period | | | Sampling season | Season | Season Au= autumn, Dr=dry | | Seasonal temperature range (°C) | Temperature range over this season | | | Water Quality | Alkalinity (mg/L) | Alkalinity | | Nitrite (mg/L) | Nitrite | | | Total Phosphorus (mg/L) | Total P | | | Nitrogen Ammonia (mg/L) | Ammonia | | | Nitrate (mg/L) | Nitrate | | | Conductivity (mS/cm) | Electrical conductivity at 25°C | | | pH | pH | | | Dissolved Oxygen (% sat) | Dissolved oxygen | | | Turbidity (NTU) | Turbidity | | | Habitat | Velocity (m/s on bottom of stream) | Water velocity | | Stream depth (cm) | Water depth | | ## Sharing/Access information NA Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales but research rarely considers these temporal scales. The Climate Variability Hypothesis (CVH) provides a conceptual framework for exploring the potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g., diel variability), organisms’ size, and taxonomic identity are also hypothesised to influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms’ ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of freshwater insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (Tbr = CTmax - CTmin). Consistent with the CVH, Tbr tended to increase with increasing annual temperature range. Tbr also increased with body size and Tbr was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We also find some support for a related hypothesis, the Climate Extreme Hypothesis (CEH), particularly for predicting upper thermal limits. We found no evidence that higher annual maximum temperature constrained individuals’ abilities to tolerate a wide range of temperatures. The support for the CVH we document, suggests that temperate organisms may be able to tolerate wider ranges of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9cnp5hqs1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9cnp5hqs1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 01 Mar 2024Publisher:Dryad Kefford, Ben; Dewenter, Beatrice; Shah, Alisha; Hughes, Jane; Poff, LeRoy; Thompson, Ross; Kefford, Ben;# The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis [https://doi.org/10.5061/dryad.9cnp5hqs1](https://doi.org/10.5061/dryad.9cnp5hqs1) **Primary article citation:** Dewenter, B. S., et al. (2024). "The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis." Ecology and Evolution 14(2): e10937. DOI: 10.1002/ece3.10937. **Overview:** The data consists of three thermal traits: critical thermal maximum (CTmax), critical thermal minimum (CTmin), and thermal breadth (TB) of freshwater insect species from two elevation gradients in temperate eastern Australia (southern New South Wales, NSW) and tropical eastern Australia (northern Queensland, QLD). Also included are the associated measures of the thermal regimes at the sites where the freshwater insects were collected. TB = CTmax - CTmin. Also reported are the size of the insects in terms of their head width (mm) and their taxonomy, the site collected from, and its elevation (m above sea level (asl)). ## Description of the data and file structure The variables in the dataset are described in the following table. The locations of the sites (and site information) are given in a second data set (see below). All measures of temperature or thermal traits are in degrees C. Head width refers to the width of the head of the individual insects at their widest point (in mm). NA = no observation (i.e., missing data) and does not imply 0. | Variable | Type | Full description of the variable | | :--------------- | :------------ | :------------------------------------------------------------------------------------------------------------ | | location | Site info | Location of the site either NSW (New South Wales) or QLD (Queensland) both in Australia | | Climate | Site info | Climate of the site either Temperate or Tropical | | elev | Site info | Elevation of the site (m asl) | | Order | Taxonomy | Order of the insect E (Ephemeroptera or mayflies) P (Plecoptera or stoneflies) T (Trichoptera or caddisflies) | | family | Taxonomy | Family of the inset | | genus | Taxonomy | Genus of the insect | | species | Taxonomy | Genus and species of the insect | | n\_CTmin | Thermal trait | Number of individuals that CTmin estimated from (min of 3) | | CTmin\_mean | Thermal trait | Mean estimate of CTmin | | CTmin\_sd | Thermal trait | Standard deviation of CTmin | | CTmin\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that CTmin was estimated from | | CTmin\_sd\_hw | Thermal trait | Standard deviation of head width (mm) of individuals that CTmin was estimated from | | n\_CTmax | Thermal trait | Number of individuals that CTmax estimated from (min of 3) | | CTmax\_mean | Thermal trait | Mean estimate of CTmax | | CTmax\_sd | Thermal trait | Standard deviation of CTmax | | CTmax\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that CTmax was estimated from | | CTmax\_sd\_hw | Thermal trait | Standard deviation of head width (mm) of individuals that CTmax was estimated from | | n\_TB | Thermal trait | Number of individuals that TB estimated from (min of 3) | | TB | Thermal trait | Mean estimate of TB | | TB\_sd | Thermal trait | Standard deviation of TB | | TB\_mean\_hw | Thermal trait | Mean head width (mm) of individuals that TB was estimated from | | TB\_mean\_hw\_sd | Thermal trait | Standard deviation of head width (mm) of individuals that TB was estimated from | A second data files contains the locations of the sites were the species were collected from for determining CTmin, CTmax and TB. This dataset also contains information about the thermal environment of these sites, recorded from data loggers measuring water temperature every 15 min, water quality (chemistry) and habitat. Where water quality variables were below detection limit, they are recorded as 0. Blank cells indicate no data. | Sample Sites | Climate | Either Temperate (for sites in NSW) or Tropical (for sites in QLD) | | :---------------------------------- | :----------------------------------------------------------------------- | :----------------------------------------------------------------- | | Stream | Name of the steam where collections made | | | Catchment | Catchment of the stream, Sn=Snowy River, Mu=Murry River, Ba=Barron River | | | Latitude | Latitude (S) of the site | | | Longitude | Longitude (E) of the site | | | Elevation (m) | Elevation of the site in m above sea level | | | Note | Notes about missing temperature data | | | Barometric Pressure (mm Hg) | Air pressure at the site (when dissolved oxygen measured) | | | 365 days | Annual minimum (°C) | Minimum temperature over a 365 day period | | Annual maximum (°C) | Maximum temperature over a 365 day period | | | Annual temperature range(°C) | Temperature range over a 365 day period | | | Annual mean (°C) | Mean temperature over a 365 day period | | | sd | Temperature standard deviation over a 365 day period | | | Mean diel variability per year (°C) | Mean diel temperature range over a 365 day period | | | sd | Standard elevation temperature diel range over a 365 day period | | | Sampling season | Season | Season Au= autumn, Dr=dry | | Seasonal temperature range (°C) | Temperature range over this season | | | Water Quality | Alkalinity (mg/L) | Alkalinity | | Nitrite (mg/L) | Nitrite | | | Total Phosphorus (mg/L) | Total P | | | Nitrogen Ammonia (mg/L) | Ammonia | | | Nitrate (mg/L) | Nitrate | | | Conductivity (mS/cm) | Electrical conductivity at 25°C | | | pH | pH | | | Dissolved Oxygen (% sat) | Dissolved oxygen | | | Turbidity (NTU) | Turbidity | | | Habitat | Velocity (m/s on bottom of stream) | Water velocity | | Stream depth (cm) | Water depth | | ## Sharing/Access information NA Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales but research rarely considers these temporal scales. The Climate Variability Hypothesis (CVH) provides a conceptual framework for exploring the potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g., diel variability), organisms’ size, and taxonomic identity are also hypothesised to influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms’ ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of freshwater insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (Tbr = CTmax - CTmin). Consistent with the CVH, Tbr tended to increase with increasing annual temperature range. Tbr also increased with body size and Tbr was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We also find some support for a related hypothesis, the Climate Extreme Hypothesis (CEH), particularly for predicting upper thermal limits. We found no evidence that higher annual maximum temperature constrained individuals’ abilities to tolerate a wide range of temperatures. The support for the CVH we document, suggests that temperate organisms may be able to tolerate wider ranges of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9cnp5hqs1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9cnp5hqs1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Authorea, Inc. Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180102016Beatrice Dewenter; Alisha Shah; Jane Hughes; LeRoy Poff; Ross Thompson; Ben Kefford;Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales. Research on species response to climate change has focussed on changes in mean temperature. Thus, there is a need to consider how species will respond to changes in temperature variability. The Climate Variability Hypothesis (CVH) provides a conceptual framework for exploring potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g. diel variability), organisms’ size and taxonomic identity may also influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms’ ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (Tbr = CTmax - CTmin). Consistent with the CVH, Tbr tended to increase with increasing annual temperature range and increasing body size. Tbr was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We found no evidence that higher annual maximum temperature constrained individuals’ abilities to tolerate a wide range of temperatures. The support for the CVH we document, suggests that temperate organisms may be able to tolerate wider range of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.169219473.35826889/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.169219473.35826889/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Authorea, Inc. Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180102016Beatrice Dewenter; Alisha Shah; Jane Hughes; LeRoy Poff; Ross Thompson; Ben Kefford;Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales. Research on species response to climate change has focussed on changes in mean temperature. Thus, there is a need to consider how species will respond to changes in temperature variability. The Climate Variability Hypothesis (CVH) provides a conceptual framework for exploring potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g. diel variability), organisms’ size and taxonomic identity may also influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms’ ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (Tbr = CTmax - CTmin). Consistent with the CVH, Tbr tended to increase with increasing annual temperature range and increasing body size. Tbr was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We found no evidence that higher annual maximum temperature constrained individuals’ abilities to tolerate a wide range of temperatures. The support for the CVH we document, suggests that temperate organisms may be able to tolerate wider range of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.169219473.35826889/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.169219473.35826889/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100100Sauer, Felix G.; Bundschuh, Mirco; Zubrod, Jochen P.; Schaefer, Ralf B.; Thompson, Kristie; Kefford, Ben J.;pmid: 27393920
Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny.
Aquatic Toxicology arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2016Data sources: Universitätsbibliographie, Universität Duisburg-EssenThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2016.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aquatic Toxicology arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2016Data sources: Universitätsbibliographie, Universität Duisburg-EssenThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2016.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100100Sauer, Felix G.; Bundschuh, Mirco; Zubrod, Jochen P.; Schaefer, Ralf B.; Thompson, Kristie; Kefford, Ben J.;pmid: 27393920
Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny.
Aquatic Toxicology arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2016Data sources: Universitätsbibliographie, Universität Duisburg-EssenThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2016.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aquatic Toxicology arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2016Data sources: Universitätsbibliographie, Universität Duisburg-EssenThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2016.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Funded by:NSF | An Integrative Approach t..., ARC | Discovery Projects - Gran...NSF| An Integrative Approach to the Ecological and Evolutionary Causes of Geographic Range Limits ,ARC| Discovery Projects - Grant ID: DP180102016Ben J. Kefford; Cameron K. Ghalambor; Beatrice Dewenter; N. LeRoy Poff; Jane Hughes; Jollene Reich; Ross Thompson;AbstractGlobal warming is increasing mean temperatures and altering temperature variability at multiple temporal scales. To better understand the consequences of changes in thermal variability for ectotherms it is necessary to consider thermal variation at different time scales (i.e., acute, diel, and annual) and the responses of organisms within and across generations. Thermodynamics constrain acute responses to temperature, but within these constraints and over longer time periods, organisms have the scope to adaptively acclimate or evolve. Yet, hypotheses and predictions about responses to future warming tend not to explicitly consider the temporal scale at which temperature varies. Here, focusing on multicellular ectothermic animals, we argue that consideration of multiple processes and constraints associated with various timescales is necessary to better understand how altered thermal variability because of climate change will affect ectotherms.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Funded by:NSF | An Integrative Approach t..., ARC | Discovery Projects - Gran...NSF| An Integrative Approach to the Ecological and Evolutionary Causes of Geographic Range Limits ,ARC| Discovery Projects - Grant ID: DP180102016Ben J. Kefford; Cameron K. Ghalambor; Beatrice Dewenter; N. LeRoy Poff; Jane Hughes; Jollene Reich; Ross Thompson;AbstractGlobal warming is increasing mean temperatures and altering temperature variability at multiple temporal scales. To better understand the consequences of changes in thermal variability for ectotherms it is necessary to consider thermal variation at different time scales (i.e., acute, diel, and annual) and the responses of organisms within and across generations. Thermodynamics constrain acute responses to temperature, but within these constraints and over longer time periods, organisms have the scope to adaptively acclimate or evolve. Yet, hypotheses and predictions about responses to future warming tend not to explicitly consider the temporal scale at which temperature varies. Here, focusing on multicellular ectothermic animals, we argue that consideration of multiple processes and constraints associated with various timescales is necessary to better understand how altered thermal variability because of climate change will affect ectotherms.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100100Authors: Kasey A. Hills; Ross V. Hyne; Ben J. Kefford;Abstract Concentrations of major ions in coal mine discharge waters and unconventional hydrocarbon produced waters derived from coal bed methane (CBM) production, are potentially harmful to freshwater ecosystems. Bicarbonate is a major constituent of produced waters from CBM and coal mining. However, little is known about the relative toxicity of differing ionic proportions, especially bicarbonate, found in these CBM waters. As all freshwater invertebrates tested are more acutely sensitive to sodium bicarbonate (NaHCO3) than sodium chloride (NaCl) or synthetic sea water, we tested the hypotheses that toxicity of CBM waters are driven by bicarbonate concentration, and waters containing a higher proportion of bicarbonate are more toxic to freshwater invertebrates than those with less bicarbonate. We compared the acute (96 h) lethal toxicity to six freshwater invertebrate species of NaHCO3 and two synthetic CBM waters, with ionic proportions representative of water from CBM wells across New South Wales (NSW) and Queensland (Qld), in Australia. The ranking of LC50 values expressed as total salinity was consistent with the hypotheses. However, when toxicity was expressed as bicarbonate concentration, the hypothesis that the toxicity of coal bed waters would be explained by bicarbonate concentration was not well supported, and other ionic components were either ameliorating or exacerbating the NaHCO3 toxicity. Our findings showed NaHCO3 was more toxic than NaCl and that the NaHCO3 proportion of synthetic CBM waters drives toxicity, however other ions are altering the toxicity of bicarbonate.
Ecotoxicology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10646-022-02552-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecotoxicology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10646-022-02552-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100100Authors: Kasey A. Hills; Ross V. Hyne; Ben J. Kefford;Abstract Concentrations of major ions in coal mine discharge waters and unconventional hydrocarbon produced waters derived from coal bed methane (CBM) production, are potentially harmful to freshwater ecosystems. Bicarbonate is a major constituent of produced waters from CBM and coal mining. However, little is known about the relative toxicity of differing ionic proportions, especially bicarbonate, found in these CBM waters. As all freshwater invertebrates tested are more acutely sensitive to sodium bicarbonate (NaHCO3) than sodium chloride (NaCl) or synthetic sea water, we tested the hypotheses that toxicity of CBM waters are driven by bicarbonate concentration, and waters containing a higher proportion of bicarbonate are more toxic to freshwater invertebrates than those with less bicarbonate. We compared the acute (96 h) lethal toxicity to six freshwater invertebrate species of NaHCO3 and two synthetic CBM waters, with ionic proportions representative of water from CBM wells across New South Wales (NSW) and Queensland (Qld), in Australia. The ranking of LC50 values expressed as total salinity was consistent with the hypotheses. However, when toxicity was expressed as bicarbonate concentration, the hypothesis that the toxicity of coal bed waters would be explained by bicarbonate concentration was not well supported, and other ionic components were either ameliorating or exacerbating the NaHCO3 toxicity. Our findings showed NaHCO3 was more toxic than NaCl and that the NaHCO3 proportion of synthetic CBM waters drives toxicity, however other ions are altering the toxicity of bicarbonate.
Ecotoxicology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10646-022-02552-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecotoxicology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10646-022-02552-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Funded by:DFGDFGJochen P. Zubrod; Ben J. Kefford; Josepha Axelsen; Katherine Muñoz; Alexander Feckler; Nina Cedergreen; Katharina Frisch; Diego Fernández; Mirco Bundschuh; Mirco Bundschuh; Eduard Szöcs; Verena C. Schreiner; Ralf B. Schäfer; Jes J. Rasmussen;AbstractDetermining whether the structural and functional stress responses of communities are similar across space and time is paramount for forecasting and extrapolating the consequences of anthropogenic pressures on ecosystems and their services. Stream ecosystems are under high anthropogenic pressure; however, studies have only examined the response of stream communities across large scales over multiple generations. We studied the responses of leaf-associated microbial communities in streams within three European biogeographical regions to chemical stress in a microcosm experiment with multiple cycles of fungicide pollution and resource colonisation. Fungal community composition and the ecosystem function leaf decomposition were measured as response variables. Microbial leaf decomposition showed similar recovery times under environmental levels of fungicide exposure across regions. Initially, the decomposition declined (between 19 and 53%) under fungicide stress and recovered to control levels during the third cycle of pollution and colonisation. Although community composition and its stress response varied between regions, this suggests similar functional community adaptation towards fungicide stress over time. Genetic, epigenetic and physiological adaptations, as well as species turnover, may have contributed to community adaptation but further studies are required to determine if and to which extent these mechanisms are operating. Overall, our findings provide the first evidence of a similar functional response of microbial leaf decomposition to chemical stress across space and time.
Scientific Reports arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35397-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Scientific Reports arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35397-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Funded by:DFGDFGJochen P. Zubrod; Ben J. Kefford; Josepha Axelsen; Katherine Muñoz; Alexander Feckler; Nina Cedergreen; Katharina Frisch; Diego Fernández; Mirco Bundschuh; Mirco Bundschuh; Eduard Szöcs; Verena C. Schreiner; Ralf B. Schäfer; Jes J. Rasmussen;AbstractDetermining whether the structural and functional stress responses of communities are similar across space and time is paramount for forecasting and extrapolating the consequences of anthropogenic pressures on ecosystems and their services. Stream ecosystems are under high anthropogenic pressure; however, studies have only examined the response of stream communities across large scales over multiple generations. We studied the responses of leaf-associated microbial communities in streams within three European biogeographical regions to chemical stress in a microcosm experiment with multiple cycles of fungicide pollution and resource colonisation. Fungal community composition and the ecosystem function leaf decomposition were measured as response variables. Microbial leaf decomposition showed similar recovery times under environmental levels of fungicide exposure across regions. Initially, the decomposition declined (between 19 and 53%) under fungicide stress and recovered to control levels during the third cycle of pollution and colonisation. Although community composition and its stress response varied between regions, this suggests similar functional community adaptation towards fungicide stress over time. Genetic, epigenetic and physiological adaptations, as well as species turnover, may have contributed to community adaptation but further studies are required to determine if and to which extent these mechanisms are operating. Overall, our findings provide the first evidence of a similar functional response of microbial leaf decomposition to chemical stress across space and time.
Scientific Reports arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35397-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Scientific Reports arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35397-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu