- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, Austria, Finland, NetherlandsPublisher:American Geophysical Union (AGU) Funded by:AKA | Global Water Scarcity Atl..., EC | SOS.aquaterra, AKA | Water and vulnerability i...AKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO) ,EC| SOS.aquaterra ,AKA| Water and vulnerability in fragile societies / Consortium: WATVULJoseph H. A. Guillaume; Joseph H. A. Guillaume; Yoshihide Wada; Yoshihide Wada; Matti Kummu; Hafsa Ahmed Munia; Vili Virkki; Ted Veldkamp; Ted Veldkamp;AbstractVarious transboundary river basins are facing increased pressure on water resources in near future. However, little is known ab out the future drivers globally, namely, changes in natural local runoff and natural inflows from upstream parts of a basin, as well as local and upstream water consumption. Here we use an ensemble of four global hydrological models forced by five global climate models and the latest greenhouse‐gas concentration (RCP) and socioeconomic pathway (SSP) scenarios to assess the impact of these drivers on transboundary water stress in the past and future. Our results show that population under water stress is expected to increase by 50% under a low population growth and emissions scenario (SSP1‐RCP2.6) and double under a high population growth and emission scenario (SSP3‐RCP6.0), compared to the year 2010. As changes in water availability have a smaller effect when water is not yet scarce, changes in water stress globally are dominated by local water consumption—managing local demand is thus necessary in order to avoid future stress. Focusing then on the role of upstream changes, we identified upstream availability (i.e., less natural runoff or increased water consumption) as the dominant driver of changes in net water availability in most downstream areas. Moreover, an increased number of people will be living in areas dependent on upstream originating water in 2050. International water treaties and management will therefore have an increasingly crucial role in these hot spot regions to ensure fair management of transboundary water resources.
IIASA PURE arrow_drop_down Earth's FutureArticle . 2020Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Earth's FutureArticle . 2020Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020 NetherlandsPublisher:Zenodo Funded by:AKA | Global Water Scarcity Atl..., AKA | Water and vulnerability i..., EC | SOS.aquaterraAKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO) ,AKA| Water and vulnerability in fragile societies / Consortium: WATVUL ,EC| SOS.aquaterraMunia, Hafsa A; Guillaume, Joseph HA; Wada, Yoshihide; Veldkamp, Ted; Virkki, Vili; Kummu, Matti;This dataset is a supplement to the following publication (please cite that when using the data): Munia et al. 2020. Future transboundary water stress and its drivers under climate change: a global study. Earth’s future. https://doi.org/10.1029/2019EF001321 Water stress category data Dataset presents the water stress category in transboundary basins at sub-basin level for different scenarios (see article for details): stress_category_Historical.gpkg: stress for years 1980 and 2010 stress_category_SSP1‐RCP26.gpkg: stress for year 2050, SSP1‐RCP2.6 scenario stress_category_SSP1‐RCP45.gpkg: stress for year 2050, SSP1‐RCP4.5 scenario stress_category_SSP2‐RCP60.gpkg: stress for year 2050, SSP2‐RCP6.0 scenario stress_category_SSP3‐RCP60.gpkg: stress for year 2050, SSP3‐RCP6.0 scenario Dataset specifications: Type: geopackage (gpkg) Spatial extent: -165, 141.5, -54.5, 70.5 (xmin, xmax, ymin, ymax) Temporal extent: see above Projection: long/lat WGS84 (EPSG:4326) Information: sub-basin name, country, stress level, stress category Unit: - Supplement to https://doi.org/10.1029/2019EF001321
ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3898395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3898395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Australia, Netherlands, Finland, Germany, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:AKA | Global green-blue water s..., EC | EARTH2OBSERVE, EC | ENHANCE +1 projectsAKA| Global green-blue water scarcity trajectories and measures for adaptation: linking the Holocene to the Anthropocene (SCART) ,EC| EARTH2OBSERVE ,EC| ENHANCE ,NWO| Climate variability and global flood-risk: improving understanding, methods, and applicationsH. de Moel; Stefan Siebert; Miina Porkka; Matti Kummu; Martina Flörke; Ted Veldkamp; Philip J. Ward; Stephanie Eisner; Joseph H. A. Guillaume; Joseph H. A. Guillaume;AbstractWater scarcity is a rapidly growing concern around the globe, but little is known about how it has developed over time. This study provides a first assessment of continuous sub-national trajectories of blue water consumption, renewable freshwater availability, and water scarcity for the entire 20th century. Water scarcity is analysed using the fundamental concepts of shortage (impacts due to low availability per capita) and stress (impacts due to high consumption relative to availability) which indicate difficulties in satisfying the needs of a population and overuse of resources respectively. While water consumption increased fourfold within the study period, the population under water scarcity increased from 0.24 billion (14% of global population) in the 1900s to 3.8 billion (58%) in the 2000s. Nearly all sub-national trajectories show an increasing trend in water scarcity. The concept of scarcity trajectory archetypes and shapes is introduced to characterize the historical development of water scarcity and suggest measures for alleviating water scarcity and increasing sustainability. Linking the scarcity trajectories to other datasets may help further deepen understanding of how trajectories relate to historical and future drivers, and hence help tackle these evolving challenges.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/145180Data sources: Bielefeld Academic Search Engine (BASE)Scientific ReportsArticle . 2016Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2021Göttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online Publicationshttp://dx.doi.org/10.1038/srep...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep38495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 662 citations 662 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/145180Data sources: Bielefeld Academic Search Engine (BASE)Scientific ReportsArticle . 2016Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2021Göttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online Publicationshttp://dx.doi.org/10.1038/srep...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep38495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 01 Jan 2020 Finland, Germany, Austria, Germany, SwitzerlandPublisher:Wiley Funded by:AKA | Water and vulnerability i..., AKA | Global Water Scarcity Atl..., EC | SOS.aquaterra +1 projectsAKA| Water and vulnerability in fragile societies / Consortium: WATVUL ,AKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO) ,EC| SOS.aquaterra ,ARC| Discovery Early Career Researcher Award - Grant ID: DE190100317Mika Jalava; Yoshihide Wada; Matti Kummu; Suvi Sojamo; Miina Porkka; Miina Porkka; Michael Lettenmeier; Joseph H. A. Guillaume; Joseph H. A. Guillaume; Elina Lehikoinen; Stephan Pfister; Leena Lankoski; Kirsi Usva; Dieter Gerten; Dieter Gerten;AbstractIn environmental management and sustainability there is an increasing interest in measurement and accounting of beneficial impact—as an incentive to action, as a communication tool, and to move toward a positive, constructive approach focused on opportunities rather than problems. One approach uses the metaphor of a “handprint,” complementing the notion of environmental footprints, which have been widely adopted for impact measurement and accounting. We analyze this idea by establishing core principles of handprint thinking: Handprint encourages actions with positive impacts and connects to analyses of footprint reductions but adds value to them and addresses the issue of what action should be taken. We also identify five key questions that need to be addressed and decisions that need to be made in performing a (potentially quantitative) handprint assessment, related to scoping of the improvement to be made, how it is achieved, and how credit is assigned, taking into account constraints on action. A case study of the potential water footprint reduction of an average Finn demonstrates how handprint thinking can be a natural extension of footprint reduction analyses. We find that there is a diversity of possible handprint assessments that have the potential to encourage doing good. Their common foundation is “handprint thinking.”
IIASA PURE arrow_drop_down Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10501292.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10501292.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Germany, FinlandPublisher:American Geophysical Union (AGU) Funded by:AKA | Global green-blue water s...AKA| Global green-blue water scarcity trajectories and measures for adaptation: linking the Holocene to the Anthropocene (SCART)Guillaume, Joseph H. A.; Kummu, Matti; Porkka, Miina; Siebert, Stefan; Varis; Olli; Jalava, Mika;doi: 10.1002/2015ef000327
AbstractThere is a pressing need to improve food security and reduce environmental impacts of agricultural production globally. Two of the proposed measures are diet change from animal‐based to plant‐based foodstuffs and reduction of food losses and waste. These two measures are linked, as diet change affects production and consumption of foodstuffs and consequently loss processes through their different water footprints and loss percentages. This paper takes this link into account for the first time and provides an assessment of the combined potential contribution of diet change and food loss reduction for reducing water footprints and water scarcity. We apply scenarios in which we change diets to follow basic dietary recommendations, limit animal‐based protein intake to 25% of total protein intake, and halve food losses to study single and combined effects of diet change and loss reduction. Dietary recommendations alone would achieve 6% and 7% reductions of blue and green water consumption, respectively, while changing diets to contain less animal products would result in savings of 11% and 18%, respectively. Halving food loss would alone achieve 12% reductions for both blue and green water. Combining the measures would reduce water consumption by 23% and 28%, respectively, lowering water scarcity in areas with a population of over 600 million. At a global scale, effects of diet change and loss reduction were synergistic with loss reductions being more effective under changed diet. This demonstrates the importance of considering the link between diet change and loss reduction in assessments of food security and resource use.
Earth's Future arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2015ef000327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Earth's Future arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2015ef000327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FinlandPublisher:MDPI AG Funded by:AKA | Global Water Scarcity Atl...AKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO)Veijalainen, Noora; Guillaume, Joseph H. A.; Keskinen, Marko; Marttunen, Mika; Varis; Olli; Ahopelto, Lauri;doi: 10.3390/su11061548
handle: 10138/340207
Severe droughts can affect water security even in countries with ample water resources. In addition, droughts are estimated to become more frequent in several regions due to changing climate. Drought affects many socio-economic sectors (e.g., agriculture, water supply, and industry), as it did in 2018 in Finland. Understanding the basin-wide picture is crucial in drought management planning. To identify vulnerable and water stressed areas in Finland, a water use-to-availability analysis was executed with a reference drought. Water stress was analyzed with the Water Depletion Index WDI. The analysis was executed using national water permits and databases. To represent a severe but realistic drought event, we modelled discharges and runoffs from the worst drought of the last century in Finland (1939–1942). The potential for performing similar analyses in data scarce contexts was also tested using estimates from global models as a screening tool. The results show that the South and Southwest of Finland would have problems with water availability during a severe drought. The most vulnerable areas would benefit from drought mitigation measures and management plans. These measures could be incorporated into the EU River Basin Management Plans.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/6/1548/pdfData sources: Multidisciplinary Digital Publishing InstituteHELDA - Digital Repository of the University of HelsinkiArticle . 2022Data sources: HELDA - Digital Repository of the University of HelsinkiAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11061548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/6/1548/pdfData sources: Multidisciplinary Digital Publishing InstituteHELDA - Digital Repository of the University of HelsinkiArticle . 2022Data sources: HELDA - Digital Repository of the University of HelsinkiAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11061548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 FinlandPublisher:MDPI AG Guillaume, Joseph H A; Kattelus, Mirja; Porkka, Miina; Räsänen, Timo A.; Varis; Olli; Keskinen, Marko;doi: 10.3390/w8050193
The water-energy-food nexus is a topical subject for research and practice, reflecting the importance of these sectors for humankind and the complexity and magnitude of the challenges they are facing. While the nexus as a concept is not yet mature or fully tested in practice, it has already encouraged a range of approaches in a variety of contexts. This article provides a set of definitions recognizing three perspectives that see the nexus as an analytical tool, governance framework and as an emerging discourse. It discusses the implications that an international transboundary context brings to the nexus and vice versa. Based on a comparative analysis of three Asian regions—Central Asia, South Asia and the Mekong Region—and their related transboundary river basins, we propose that the transboundary context has three major implications: diversity of scales and perspectives, importance of state actors and importance of politics. Similarly, introducing the nexus as an approach in a transboundary context has a potential to provide new resources and approaches, alter existing actor dynamics and portray a richer picture of relationships. Overall, the significance of water-energy-food linkages and their direct impacts on water allocation mean that the nexus has the potential to complement existing approaches also in the transboundary river basins.
Water arrow_drop_down WaterOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2073-4441/8/5/193/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8050193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 122 citations 122 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2073-4441/8/5/193/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8050193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Finland, United Kingdom, Netherlands, NetherlandsPublisher:IOP Publishing Funded by:AKA | Global green-blue water s...AKA| Global green-blue water scarcity trajectories and measures for adaptation: linking the Holocene to the Anthropocene (SCART)Yoshihide Wada; Yoshihide Wada; Yoshihide Wada; Miina Porkka; Matti Kummu; Naho Mirumachi; Hafsa Ahmed Munia; Joseph H. A. Guillaume;Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.
Environmental Resear... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication ArchiveKing's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/1/014002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 146 citations 146 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication ArchiveKing's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/1/014002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, Austria, Finland, NetherlandsPublisher:American Geophysical Union (AGU) Funded by:AKA | Global Water Scarcity Atl..., EC | SOS.aquaterra, AKA | Water and vulnerability i...AKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO) ,EC| SOS.aquaterra ,AKA| Water and vulnerability in fragile societies / Consortium: WATVULJoseph H. A. Guillaume; Joseph H. A. Guillaume; Yoshihide Wada; Yoshihide Wada; Matti Kummu; Hafsa Ahmed Munia; Vili Virkki; Ted Veldkamp; Ted Veldkamp;AbstractVarious transboundary river basins are facing increased pressure on water resources in near future. However, little is known ab out the future drivers globally, namely, changes in natural local runoff and natural inflows from upstream parts of a basin, as well as local and upstream water consumption. Here we use an ensemble of four global hydrological models forced by five global climate models and the latest greenhouse‐gas concentration (RCP) and socioeconomic pathway (SSP) scenarios to assess the impact of these drivers on transboundary water stress in the past and future. Our results show that population under water stress is expected to increase by 50% under a low population growth and emissions scenario (SSP1‐RCP2.6) and double under a high population growth and emission scenario (SSP3‐RCP6.0), compared to the year 2010. As changes in water availability have a smaller effect when water is not yet scarce, changes in water stress globally are dominated by local water consumption—managing local demand is thus necessary in order to avoid future stress. Focusing then on the role of upstream changes, we identified upstream availability (i.e., less natural runoff or increased water consumption) as the dominant driver of changes in net water availability in most downstream areas. Moreover, an increased number of people will be living in areas dependent on upstream originating water in 2050. International water treaties and management will therefore have an increasingly crucial role in these hot spot regions to ensure fair management of transboundary water resources.
IIASA PURE arrow_drop_down Earth's FutureArticle . 2020Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Earth's FutureArticle . 2020Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020 NetherlandsPublisher:Zenodo Funded by:AKA | Global Water Scarcity Atl..., AKA | Water and vulnerability i..., EC | SOS.aquaterraAKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO) ,AKA| Water and vulnerability in fragile societies / Consortium: WATVUL ,EC| SOS.aquaterraMunia, Hafsa A; Guillaume, Joseph HA; Wada, Yoshihide; Veldkamp, Ted; Virkki, Vili; Kummu, Matti;This dataset is a supplement to the following publication (please cite that when using the data): Munia et al. 2020. Future transboundary water stress and its drivers under climate change: a global study. Earth’s future. https://doi.org/10.1029/2019EF001321 Water stress category data Dataset presents the water stress category in transboundary basins at sub-basin level for different scenarios (see article for details): stress_category_Historical.gpkg: stress for years 1980 and 2010 stress_category_SSP1‐RCP26.gpkg: stress for year 2050, SSP1‐RCP2.6 scenario stress_category_SSP1‐RCP45.gpkg: stress for year 2050, SSP1‐RCP4.5 scenario stress_category_SSP2‐RCP60.gpkg: stress for year 2050, SSP2‐RCP6.0 scenario stress_category_SSP3‐RCP60.gpkg: stress for year 2050, SSP3‐RCP6.0 scenario Dataset specifications: Type: geopackage (gpkg) Spatial extent: -165, 141.5, -54.5, 70.5 (xmin, xmax, ymin, ymax) Temporal extent: see above Projection: long/lat WGS84 (EPSG:4326) Information: sub-basin name, country, stress level, stress category Unit: - Supplement to https://doi.org/10.1029/2019EF001321
ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3898395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3898395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Australia, Netherlands, Finland, Germany, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:AKA | Global green-blue water s..., EC | EARTH2OBSERVE, EC | ENHANCE +1 projectsAKA| Global green-blue water scarcity trajectories and measures for adaptation: linking the Holocene to the Anthropocene (SCART) ,EC| EARTH2OBSERVE ,EC| ENHANCE ,NWO| Climate variability and global flood-risk: improving understanding, methods, and applicationsH. de Moel; Stefan Siebert; Miina Porkka; Matti Kummu; Martina Flörke; Ted Veldkamp; Philip J. Ward; Stephanie Eisner; Joseph H. A. Guillaume; Joseph H. A. Guillaume;AbstractWater scarcity is a rapidly growing concern around the globe, but little is known about how it has developed over time. This study provides a first assessment of continuous sub-national trajectories of blue water consumption, renewable freshwater availability, and water scarcity for the entire 20th century. Water scarcity is analysed using the fundamental concepts of shortage (impacts due to low availability per capita) and stress (impacts due to high consumption relative to availability) which indicate difficulties in satisfying the needs of a population and overuse of resources respectively. While water consumption increased fourfold within the study period, the population under water scarcity increased from 0.24 billion (14% of global population) in the 1900s to 3.8 billion (58%) in the 2000s. Nearly all sub-national trajectories show an increasing trend in water scarcity. The concept of scarcity trajectory archetypes and shapes is introduced to characterize the historical development of water scarcity and suggest measures for alleviating water scarcity and increasing sustainability. Linking the scarcity trajectories to other datasets may help further deepen understanding of how trajectories relate to historical and future drivers, and hence help tackle these evolving challenges.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/145180Data sources: Bielefeld Academic Search Engine (BASE)Scientific ReportsArticle . 2016Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2021Göttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online Publicationshttp://dx.doi.org/10.1038/srep...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep38495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 662 citations 662 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/145180Data sources: Bielefeld Academic Search Engine (BASE)Scientific ReportsArticle . 2016Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2021Göttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online Publicationshttp://dx.doi.org/10.1038/srep...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep38495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 01 Jan 2020 Finland, Germany, Austria, Germany, SwitzerlandPublisher:Wiley Funded by:AKA | Water and vulnerability i..., AKA | Global Water Scarcity Atl..., EC | SOS.aquaterra +1 projectsAKA| Water and vulnerability in fragile societies / Consortium: WATVUL ,AKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO) ,EC| SOS.aquaterra ,ARC| Discovery Early Career Researcher Award - Grant ID: DE190100317Mika Jalava; Yoshihide Wada; Matti Kummu; Suvi Sojamo; Miina Porkka; Miina Porkka; Michael Lettenmeier; Joseph H. A. Guillaume; Joseph H. A. Guillaume; Elina Lehikoinen; Stephan Pfister; Leena Lankoski; Kirsi Usva; Dieter Gerten; Dieter Gerten;AbstractIn environmental management and sustainability there is an increasing interest in measurement and accounting of beneficial impact—as an incentive to action, as a communication tool, and to move toward a positive, constructive approach focused on opportunities rather than problems. One approach uses the metaphor of a “handprint,” complementing the notion of environmental footprints, which have been widely adopted for impact measurement and accounting. We analyze this idea by establishing core principles of handprint thinking: Handprint encourages actions with positive impacts and connects to analyses of footprint reductions but adds value to them and addresses the issue of what action should be taken. We also identify five key questions that need to be addressed and decisions that need to be made in performing a (potentially quantitative) handprint assessment, related to scoping of the improvement to be made, how it is achieved, and how credit is assigned, taking into account constraints on action. A case study of the potential water footprint reduction of an average Finn demonstrates how handprint thinking can be a natural extension of footprint reduction analyses. We find that there is a diversity of possible handprint assessments that have the potential to encourage doing good. Their common foundation is “handprint thinking.”
IIASA PURE arrow_drop_down Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10501292.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10501292.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Germany, FinlandPublisher:American Geophysical Union (AGU) Funded by:AKA | Global green-blue water s...AKA| Global green-blue water scarcity trajectories and measures for adaptation: linking the Holocene to the Anthropocene (SCART)Guillaume, Joseph H. A.; Kummu, Matti; Porkka, Miina; Siebert, Stefan; Varis; Olli; Jalava, Mika;doi: 10.1002/2015ef000327
AbstractThere is a pressing need to improve food security and reduce environmental impacts of agricultural production globally. Two of the proposed measures are diet change from animal‐based to plant‐based foodstuffs and reduction of food losses and waste. These two measures are linked, as diet change affects production and consumption of foodstuffs and consequently loss processes through their different water footprints and loss percentages. This paper takes this link into account for the first time and provides an assessment of the combined potential contribution of diet change and food loss reduction for reducing water footprints and water scarcity. We apply scenarios in which we change diets to follow basic dietary recommendations, limit animal‐based protein intake to 25% of total protein intake, and halve food losses to study single and combined effects of diet change and loss reduction. Dietary recommendations alone would achieve 6% and 7% reductions of blue and green water consumption, respectively, while changing diets to contain less animal products would result in savings of 11% and 18%, respectively. Halving food loss would alone achieve 12% reductions for both blue and green water. Combining the measures would reduce water consumption by 23% and 28%, respectively, lowering water scarcity in areas with a population of over 600 million. At a global scale, effects of diet change and loss reduction were synergistic with loss reductions being more effective under changed diet. This demonstrates the importance of considering the link between diet change and loss reduction in assessments of food security and resource use.
Earth's Future arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2015ef000327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Earth's Future arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2015ef000327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FinlandPublisher:MDPI AG Funded by:AKA | Global Water Scarcity Atl...AKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO)Veijalainen, Noora; Guillaume, Joseph H. A.; Keskinen, Marko; Marttunen, Mika; Varis; Olli; Ahopelto, Lauri;doi: 10.3390/su11061548
handle: 10138/340207
Severe droughts can affect water security even in countries with ample water resources. In addition, droughts are estimated to become more frequent in several regions due to changing climate. Drought affects many socio-economic sectors (e.g., agriculture, water supply, and industry), as it did in 2018 in Finland. Understanding the basin-wide picture is crucial in drought management planning. To identify vulnerable and water stressed areas in Finland, a water use-to-availability analysis was executed with a reference drought. Water stress was analyzed with the Water Depletion Index WDI. The analysis was executed using national water permits and databases. To represent a severe but realistic drought event, we modelled discharges and runoffs from the worst drought of the last century in Finland (1939–1942). The potential for performing similar analyses in data scarce contexts was also tested using estimates from global models as a screening tool. The results show that the South and Southwest of Finland would have problems with water availability during a severe drought. The most vulnerable areas would benefit from drought mitigation measures and management plans. These measures could be incorporated into the EU River Basin Management Plans.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/6/1548/pdfData sources: Multidisciplinary Digital Publishing InstituteHELDA - Digital Repository of the University of HelsinkiArticle . 2022Data sources: HELDA - Digital Repository of the University of HelsinkiAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11061548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/6/1548/pdfData sources: Multidisciplinary Digital Publishing InstituteHELDA - Digital Repository of the University of HelsinkiArticle . 2022Data sources: HELDA - Digital Repository of the University of HelsinkiAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11061548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 FinlandPublisher:MDPI AG Guillaume, Joseph H A; Kattelus, Mirja; Porkka, Miina; Räsänen, Timo A.; Varis; Olli; Keskinen, Marko;doi: 10.3390/w8050193
The water-energy-food nexus is a topical subject for research and practice, reflecting the importance of these sectors for humankind and the complexity and magnitude of the challenges they are facing. While the nexus as a concept is not yet mature or fully tested in practice, it has already encouraged a range of approaches in a variety of contexts. This article provides a set of definitions recognizing three perspectives that see the nexus as an analytical tool, governance framework and as an emerging discourse. It discusses the implications that an international transboundary context brings to the nexus and vice versa. Based on a comparative analysis of three Asian regions—Central Asia, South Asia and the Mekong Region—and their related transboundary river basins, we propose that the transboundary context has three major implications: diversity of scales and perspectives, importance of state actors and importance of politics. Similarly, introducing the nexus as an approach in a transboundary context has a potential to provide new resources and approaches, alter existing actor dynamics and portray a richer picture of relationships. Overall, the significance of water-energy-food linkages and their direct impacts on water allocation mean that the nexus has the potential to complement existing approaches also in the transboundary river basins.
Water arrow_drop_down WaterOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2073-4441/8/5/193/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8050193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 122 citations 122 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2073-4441/8/5/193/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8050193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Finland, United Kingdom, Netherlands, NetherlandsPublisher:IOP Publishing Funded by:AKA | Global green-blue water s...AKA| Global green-blue water scarcity trajectories and measures for adaptation: linking the Holocene to the Anthropocene (SCART)Yoshihide Wada; Yoshihide Wada; Yoshihide Wada; Miina Porkka; Matti Kummu; Naho Mirumachi; Hafsa Ahmed Munia; Joseph H. A. Guillaume;Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.
Environmental Resear... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication ArchiveKing's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/1/014002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 146 citations 146 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2016 . Peer-reviewedData sources: Aaltodoc Publication ArchiveKing's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/1/014002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu