- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., UKRI | ARBOLES: A trait-based Un..., UKRI | TREMOR: Mechanisms and co... +1 projectsNSF| Collaborative Research: Are Amazon forest trees source or sink limited? Mapping hydraulic traits to carbon allocation strategies to decipher forest function during drought ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-REDAuthors: Julia Valentim Tavares; Rafael S. Oliveira; Maurizio Mencuccini; Caroline Signori‐Müller; +77 AuthorsJulia Valentim Tavares; Rafael S. Oliveira; Maurizio Mencuccini; Caroline Signori‐Müller; Luciano Pereira; Francisco Carvalho Diniz; Martin Gilpin; Manuel J Marca Zevallos; Carlos A Salas Yupayccana; Martin Acosta Oliveira; Flor M Pérez Mullisaca; Fernanda Barros; Paulo R. L. Bittencourt; Halina Soares Jancoski; Marina Corrêa Scalon; Beatriz Schwantes Marimon; Imma Oliveras Menor; Ben Hur Marimon‐Junior; Max Fancourt; Alexander Chambers-Ostler; Adriane Esquível-Muelbert; Lucy Rowland; Patrick Meir; Antonio Costa; Alex Nina; Jesús M. Bañon Sanchez; José Sanchez Tintaya; Rudi Cruz; Jean Baca; Leticia Fernandes da Silva; Edwin R M Cumapa; João Antônio R Santos; Renata Teixeira; Ligia Tello; Maira Tatiana Martinez Ugarteche; Gina A Cuellar; Franklin Martinez; Alejandro Araujo‐Murakami; Everton Cristo de Almeida; Wesley Jonatar Alves da Cruz; Jhon del Águila Pasquel; L. E. O. C. Aragão; Tim R. Baker; Plínio Barbosa de Camargo; Roel Brienen; Wendeson Castro; Sabina Cerruto Ribeiro; Fernanda Coelho de Souza; Eric G. Cosio; Nallaret Dávila Cardozo; Richarlly da Costa Silva; Mathias Disney; Javier Silva Espejo; Ted R. Feldpausch; Leandro Valle Ferreira; Leandro Lacerda Giacomin; Níro Higuchi; Marina Hirota; Eurídice N. Honorio Coronado; Walter Huaraca Huasco; Simon L. Lewis; Gerardo Flores Llampazo; Yadvinder Malhi; Abel Monteagudo Mendoza; Paulo S. Morandi; Víctor Chama Moscoso; Robert Muscarella; Deliane Penha; Mayda Cecília dos Santos Rocha; Gleicy Assunção Rodrigues; Ademir Roberto Ruschel; Norma Salinas; Monique Bohora Schlickmann; Marcos Silveira; Joey Talbot; Rodolfo Vásquez; Laura Barbosa Vedovato; Simone A. Vieira; Oliver L. Phillips; Emanuel Gloor; David Galbraith;AbstractTropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, $$\varPsi $$ Ψ 50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3–5, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters $$\varPsi $$ Ψ 50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both $$\varPsi $$ Ψ 50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10023/27887Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04107976Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-05971-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 3 Powered bymore_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10023/27887Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04107976Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-05971-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., UKRI | ARBOLES: A trait-based Un..., UKRI | TREMOR: Mechanisms and co... +1 projectsNSF| Collaborative Research: Are Amazon forest trees source or sink limited? Mapping hydraulic traits to carbon allocation strategies to decipher forest function during drought ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-REDAuthors: Julia Valentim Tavares; Rafael S. Oliveira; Maurizio Mencuccini; Caroline Signori‐Müller; +77 AuthorsJulia Valentim Tavares; Rafael S. Oliveira; Maurizio Mencuccini; Caroline Signori‐Müller; Luciano Pereira; Francisco Carvalho Diniz; Martin Gilpin; Manuel J Marca Zevallos; Carlos A Salas Yupayccana; Martin Acosta Oliveira; Flor M Pérez Mullisaca; Fernanda Barros; Paulo R. L. Bittencourt; Halina Soares Jancoski; Marina Corrêa Scalon; Beatriz Schwantes Marimon; Imma Oliveras Menor; Ben Hur Marimon‐Junior; Max Fancourt; Alexander Chambers-Ostler; Adriane Esquível-Muelbert; Lucy Rowland; Patrick Meir; Antonio Costa; Alex Nina; Jesús M. Bañon Sanchez; José Sanchez Tintaya; Rudi Cruz; Jean Baca; Leticia Fernandes da Silva; Edwin R M Cumapa; João Antônio R Santos; Renata Teixeira; Ligia Tello; Maira Tatiana Martinez Ugarteche; Gina A Cuellar; Franklin Martinez; Alejandro Araujo‐Murakami; Everton Cristo de Almeida; Wesley Jonatar Alves da Cruz; Jhon del Águila Pasquel; L. E. O. C. Aragão; Tim R. Baker; Plínio Barbosa de Camargo; Roel Brienen; Wendeson Castro; Sabina Cerruto Ribeiro; Fernanda Coelho de Souza; Eric G. Cosio; Nallaret Dávila Cardozo; Richarlly da Costa Silva; Mathias Disney; Javier Silva Espejo; Ted R. Feldpausch; Leandro Valle Ferreira; Leandro Lacerda Giacomin; Níro Higuchi; Marina Hirota; Eurídice N. Honorio Coronado; Walter Huaraca Huasco; Simon L. Lewis; Gerardo Flores Llampazo; Yadvinder Malhi; Abel Monteagudo Mendoza; Paulo S. Morandi; Víctor Chama Moscoso; Robert Muscarella; Deliane Penha; Mayda Cecília dos Santos Rocha; Gleicy Assunção Rodrigues; Ademir Roberto Ruschel; Norma Salinas; Monique Bohora Schlickmann; Marcos Silveira; Joey Talbot; Rodolfo Vásquez; Laura Barbosa Vedovato; Simone A. Vieira; Oliver L. Phillips; Emanuel Gloor; David Galbraith;AbstractTropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, $$\varPsi $$ Ψ 50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3–5, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters $$\varPsi $$ Ψ 50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both $$\varPsi $$ Ψ 50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10023/27887Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04107976Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-05971-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 3 Powered bymore_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10023/27887Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04107976Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-05971-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu