- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Cheng Cheng; Natalia Pereira Gutierrez; Andrew Blakers; Matthew Stocks;Energy for Sustainab... arrow_drop_down Energy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2022.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy for Sustainab... arrow_drop_down Energy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2022.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Andrew Blakers; Matthew Stocks; Bin Lu; Cheng Cheng; Ryan Stocks;Solar photovoltaics (PVs) and wind constitute more than 60% of global annual net new capacity additions. Balancing an electricity system with 30–100% variable PV and wind is straightforward using off-the-shelf techniques comprising stronger interconnection over large areas to smooth out local weather, storage, demand management, and occasional spillage of renewable electricity. The overwhelming dominance of PV, wind, and hydroelectricity in new renewable energy deployment means that renewable electricity is tracking toward near equivalence with renewable energy. A global survey of off-river (closed-loop) pumped hydro energy storage sites identified 616 000 promising sites around the world with a combined storage capacity of 23 million GWh, which is two orders of magnitude more than required to support 100% global renewable electricity. This is significant because pumped hydro storage is the lowest cost storage method and is available off-the-shelf in large scale. Australia is deploying PV and wind at a rate of 250 W per year per capita, which is four to five times faster than in the European Union, the USA, Japan, and China. This is significant because it demonstrates that rapid deployment of PV and wind is feasible, with consequent rapid reductions in greenhouse gas emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2938882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2938882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: David Firnando Silalahi; Andrew Blakers; Cheng Cheng;doi: 10.3390/en17010003
The rapid fall in the cost of solar photovoltaics and wind energy offers a pathway to the deep decarbonization of energy at an affordable price. Off-river pumped hydro energy storage and batteries provide mature and large-scale storage to balance variable generation and demand while minimizing environmental and social impacts. High-voltage inter-regional interconnection and dispatchable capacity (existing hydro and geothermal) can help balance supply and demand. This work investigates an Indonesian energy decarbonization pathway using mostly solar photovoltaics. An hourly energy balance analysis using ten years of meteorological data was performed for a hypothetical solar-dominated Indonesian electricity system for the consumption of 3, 6 and 10 megawatt-hours (MWh) per capita per year (compared with current consumption of 1 MWh per capita per year). Pumped hydro provides overnight and longer storage. Strong interconnection between islands was found to be unnecessary for Indonesia, contrary to findings from similar modelling in countries at higher latitudes. Storage requirements for power and energy were found to be smaller than three kilowatts and 30–45 kilowatt-hours per person, respectively. Introducing gas turbines (burning hydrogen or synthetic methane) contributing around 1% of annual generation reduced the levelized cost of electricity (LCOE) by 14% and halved the storage requirements by allowing the system to ride through prolonged cloudy periods at lower cost. This work showed that Indonesia’s vast solar potential combined with its vast capacity for off-river pumped hydro energy storage could readily achieve 100% renewable electricity at low cost. The LCOE for a balanced solar-dominated system in Indonesia was found to be in the range of 77–102 USD/megawatt-hour.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: David Firnando Silalahi; Andrew Blakers; Bin Lu; Cheng Cheng;doi: 10.3390/en15093457
Indonesia has vast solar energy potential, far more than needed to meet all its energy requirements without the use of fossil fuels. This remains true after per capita energy consumption rises to match developed countries, and most energy functions are electrified to minimize the use of fossil fuels. Because Indonesia has relatively small energy potential from hydro, wind, biomass, geothermal and ocean energy, it will rely mostly on solar for its sustainable energy needs. Thus, Indonesia will require large amounts of storage for overnight and longer periods. Pumped hydro comprises 99% of global energy storage for the electricity industry. In this paper, we demonstrate that Indonesia has vast practical potential for low-cost off-river pumped hydro energy storage with low environmental and social impact; far more than it needs to balance a solar-dominated energy system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG David Firnando Silalahi; Andrew Blakers; Matthew Stocks; Bin Lu; Cheng Cheng; Liam Hayes;doi: 10.3390/en14175424
In this paper, we conclude that Indonesia has vast potential for generating and balancing solar photovoltaic (PV) energy to meet future energy needs at a competitive cost. We systematically analyse renewable energy potential in Indonesia. Solar PV is identified to be an energy source whose technical, environmental and economic potential far exceeds Indonesia’s present and future energy requirements and is far larger than all other renewable energy resources combined. We estimate that electricity consumption in Indonesia could reach 9000 terawatt-hours per year by 2050, which is 30 times larger than at present. Indonesia has abundant space to deploy enough solar to meet this requirement, including on rooftops, inland reservoirs, mining wasteland, and in combination with agriculture. Importantly, Indonesia has a vast maritime area that almost never experiences strong winds or large waves that could host floating solar capable of generating >200,000 terawatt-hours per year. Indonesia also has far more off-river pumped hydro energy storage potential than required for balancing solar generation.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5424/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5424/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Anna Nadolny; Cheng Cheng; Bin Lu; Andrew Blakers; Matthew Stocks;Abstract Large greenhouse gas reductions are possible with a fully decarbonised grid and electric land transport. Additional electric load could pose a significant challenge to a grid with high levels of variable and non-dispatchable renewable energy sources. This scenario is not well-examined, nor is the use of pumped hydro energy storage for low-cost energy balancing. In this paper, we investigate the electrification of land transport within a photovoltaics and wind dominated 100% renewable electricity system. Only technologies that are deployed at scale and widely available globally are considered, namely photovoltaics, wind, battery electric vehicles, high voltage transmission, and pumped hydro. As a case study we present an hourly energy balance analysis of the Australian National Electricity Market with 100% renewables and 100% uptake of electric vehicles for land transport. The cost of the system is determined by occasional periods (days-weeks) of low renewable generation, and therefore only weakly dependent on the charging regime. The 40% increase in electricity demand due to electric land transport can be incorporated with a 4%–8% increase in the levelized cost of electricity. An exception occurs if most passenger vehicle charging occurs during the evening peak period, in which case the average price increases by about 18%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Cheng Cheng; David Firnando Silalahi; Lucy Roberts; Anna Nadolny; Timothy Weber; Andrew Blakers; Kylie Catchpole;doi: 10.3390/en18040891
The decarbonization of the electricity system coupled with the electrification of transport, heat, and industry represents a practical and cost-effective approach to deep decarbonization. A key question is as follows: where to build new solar and wind farms? This study presents a cost-based approach to evaluate land parcels for solar and wind farm suitability using colour-coded heatmaps that visually depict favourable locations. An indicative cost of electricity is calculated and classified for each pixel by focusing on key factors including the resource availability, proximity to transmission infrastructure and load centres, and exclusion of sensitive areas. The proposed approach mitigates the subjectivity associated with traditional multi-criteria decision-making methods, in which both the selection of siting factors and the assignment of their associated weightings rely highly on the subjective judgements of experts. The methodology is applied to Australia, South Korea, and Indonesia, and the results show that proximity to high-voltage transmission and load centres is a key factor affecting site selection in Australia and Indonesia, while connection costs are less critical in South Korea due to its smaller land area and extensive infrastructure. The outcomes of this study, including heatmaps and detailed statistics, are made publicly available to provide both qualitative and quantitative information that allows comparisons between regions and within a region. This study aims to empower policymakers, developers, communities, and individual landholders to make informed decisions and, ultimately, to facilitate strategic renewable energy deployment and contribute to global decarbonization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18040891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18040891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Elsevier BV Authors: Andrew Blakers; Cheng Cheng; Matthew Stocks; Bin Lu;Rapid cost reductions have led to the widespread deployment of renewable technologies such as solar photovoltaics (PV) and wind globally. Additional storage is needed when the share of solar PV and wind in electricity production rises to 50-100%. Pumped hydro energy storage constitutes 97% of the global capacity of stored power and over 99% of stored energy and is the leading method of energy storage. Off-river pumped hydro energy storage options, strong interconnections over large areas, and demand management can support a highly renewable electricity system at a modest cost. East Asia has abundant wind, solar, and off-river pumped hydro energy resources. The identified pumped hydro energy storage potential is 100 times more than required to support 100% renewable energy in East Asia. Keywords: Photovoltaics, Wind energy, Pumped hydro energy storage, 100% renewable energy
Global Energy Interc... arrow_drop_down Global Energy InterconnectionArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloei.2019.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Energy Interc... arrow_drop_down Global Energy InterconnectionArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloei.2019.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Cheng Cheng; Andrew Blakers; Matthew Stocks; Bin Lu;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Timothy Weber; Ryan Stocks; Andrew Blakers; Anna Nadolny; Cheng Cheng;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Cheng Cheng; Natalia Pereira Gutierrez; Andrew Blakers; Matthew Stocks;Energy for Sustainab... arrow_drop_down Energy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2022.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy for Sustainab... arrow_drop_down Energy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2022.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Andrew Blakers; Matthew Stocks; Bin Lu; Cheng Cheng; Ryan Stocks;Solar photovoltaics (PVs) and wind constitute more than 60% of global annual net new capacity additions. Balancing an electricity system with 30–100% variable PV and wind is straightforward using off-the-shelf techniques comprising stronger interconnection over large areas to smooth out local weather, storage, demand management, and occasional spillage of renewable electricity. The overwhelming dominance of PV, wind, and hydroelectricity in new renewable energy deployment means that renewable electricity is tracking toward near equivalence with renewable energy. A global survey of off-river (closed-loop) pumped hydro energy storage sites identified 616 000 promising sites around the world with a combined storage capacity of 23 million GWh, which is two orders of magnitude more than required to support 100% global renewable electricity. This is significant because pumped hydro storage is the lowest cost storage method and is available off-the-shelf in large scale. Australia is deploying PV and wind at a rate of 250 W per year per capita, which is four to five times faster than in the European Union, the USA, Japan, and China. This is significant because it demonstrates that rapid deployment of PV and wind is feasible, with consequent rapid reductions in greenhouse gas emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2938882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2938882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: David Firnando Silalahi; Andrew Blakers; Cheng Cheng;doi: 10.3390/en17010003
The rapid fall in the cost of solar photovoltaics and wind energy offers a pathway to the deep decarbonization of energy at an affordable price. Off-river pumped hydro energy storage and batteries provide mature and large-scale storage to balance variable generation and demand while minimizing environmental and social impacts. High-voltage inter-regional interconnection and dispatchable capacity (existing hydro and geothermal) can help balance supply and demand. This work investigates an Indonesian energy decarbonization pathway using mostly solar photovoltaics. An hourly energy balance analysis using ten years of meteorological data was performed for a hypothetical solar-dominated Indonesian electricity system for the consumption of 3, 6 and 10 megawatt-hours (MWh) per capita per year (compared with current consumption of 1 MWh per capita per year). Pumped hydro provides overnight and longer storage. Strong interconnection between islands was found to be unnecessary for Indonesia, contrary to findings from similar modelling in countries at higher latitudes. Storage requirements for power and energy were found to be smaller than three kilowatts and 30–45 kilowatt-hours per person, respectively. Introducing gas turbines (burning hydrogen or synthetic methane) contributing around 1% of annual generation reduced the levelized cost of electricity (LCOE) by 14% and halved the storage requirements by allowing the system to ride through prolonged cloudy periods at lower cost. This work showed that Indonesia’s vast solar potential combined with its vast capacity for off-river pumped hydro energy storage could readily achieve 100% renewable electricity at low cost. The LCOE for a balanced solar-dominated system in Indonesia was found to be in the range of 77–102 USD/megawatt-hour.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: David Firnando Silalahi; Andrew Blakers; Bin Lu; Cheng Cheng;doi: 10.3390/en15093457
Indonesia has vast solar energy potential, far more than needed to meet all its energy requirements without the use of fossil fuels. This remains true after per capita energy consumption rises to match developed countries, and most energy functions are electrified to minimize the use of fossil fuels. Because Indonesia has relatively small energy potential from hydro, wind, biomass, geothermal and ocean energy, it will rely mostly on solar for its sustainable energy needs. Thus, Indonesia will require large amounts of storage for overnight and longer periods. Pumped hydro comprises 99% of global energy storage for the electricity industry. In this paper, we demonstrate that Indonesia has vast practical potential for low-cost off-river pumped hydro energy storage with low environmental and social impact; far more than it needs to balance a solar-dominated energy system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG David Firnando Silalahi; Andrew Blakers; Matthew Stocks; Bin Lu; Cheng Cheng; Liam Hayes;doi: 10.3390/en14175424
In this paper, we conclude that Indonesia has vast potential for generating and balancing solar photovoltaic (PV) energy to meet future energy needs at a competitive cost. We systematically analyse renewable energy potential in Indonesia. Solar PV is identified to be an energy source whose technical, environmental and economic potential far exceeds Indonesia’s present and future energy requirements and is far larger than all other renewable energy resources combined. We estimate that electricity consumption in Indonesia could reach 9000 terawatt-hours per year by 2050, which is 30 times larger than at present. Indonesia has abundant space to deploy enough solar to meet this requirement, including on rooftops, inland reservoirs, mining wasteland, and in combination with agriculture. Importantly, Indonesia has a vast maritime area that almost never experiences strong winds or large waves that could host floating solar capable of generating >200,000 terawatt-hours per year. Indonesia also has far more off-river pumped hydro energy storage potential than required for balancing solar generation.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5424/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5424/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Anna Nadolny; Cheng Cheng; Bin Lu; Andrew Blakers; Matthew Stocks;Abstract Large greenhouse gas reductions are possible with a fully decarbonised grid and electric land transport. Additional electric load could pose a significant challenge to a grid with high levels of variable and non-dispatchable renewable energy sources. This scenario is not well-examined, nor is the use of pumped hydro energy storage for low-cost energy balancing. In this paper, we investigate the electrification of land transport within a photovoltaics and wind dominated 100% renewable electricity system. Only technologies that are deployed at scale and widely available globally are considered, namely photovoltaics, wind, battery electric vehicles, high voltage transmission, and pumped hydro. As a case study we present an hourly energy balance analysis of the Australian National Electricity Market with 100% renewables and 100% uptake of electric vehicles for land transport. The cost of the system is determined by occasional periods (days-weeks) of low renewable generation, and therefore only weakly dependent on the charging regime. The 40% increase in electricity demand due to electric land transport can be incorporated with a 4%–8% increase in the levelized cost of electricity. An exception occurs if most passenger vehicle charging occurs during the evening peak period, in which case the average price increases by about 18%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Cheng Cheng; David Firnando Silalahi; Lucy Roberts; Anna Nadolny; Timothy Weber; Andrew Blakers; Kylie Catchpole;doi: 10.3390/en18040891
The decarbonization of the electricity system coupled with the electrification of transport, heat, and industry represents a practical and cost-effective approach to deep decarbonization. A key question is as follows: where to build new solar and wind farms? This study presents a cost-based approach to evaluate land parcels for solar and wind farm suitability using colour-coded heatmaps that visually depict favourable locations. An indicative cost of electricity is calculated and classified for each pixel by focusing on key factors including the resource availability, proximity to transmission infrastructure and load centres, and exclusion of sensitive areas. The proposed approach mitigates the subjectivity associated with traditional multi-criteria decision-making methods, in which both the selection of siting factors and the assignment of their associated weightings rely highly on the subjective judgements of experts. The methodology is applied to Australia, South Korea, and Indonesia, and the results show that proximity to high-voltage transmission and load centres is a key factor affecting site selection in Australia and Indonesia, while connection costs are less critical in South Korea due to its smaller land area and extensive infrastructure. The outcomes of this study, including heatmaps and detailed statistics, are made publicly available to provide both qualitative and quantitative information that allows comparisons between regions and within a region. This study aims to empower policymakers, developers, communities, and individual landholders to make informed decisions and, ultimately, to facilitate strategic renewable energy deployment and contribute to global decarbonization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18040891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18040891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Elsevier BV Authors: Andrew Blakers; Cheng Cheng; Matthew Stocks; Bin Lu;Rapid cost reductions have led to the widespread deployment of renewable technologies such as solar photovoltaics (PV) and wind globally. Additional storage is needed when the share of solar PV and wind in electricity production rises to 50-100%. Pumped hydro energy storage constitutes 97% of the global capacity of stored power and over 99% of stored energy and is the leading method of energy storage. Off-river pumped hydro energy storage options, strong interconnections over large areas, and demand management can support a highly renewable electricity system at a modest cost. East Asia has abundant wind, solar, and off-river pumped hydro energy resources. The identified pumped hydro energy storage potential is 100 times more than required to support 100% renewable energy in East Asia. Keywords: Photovoltaics, Wind energy, Pumped hydro energy storage, 100% renewable energy
Global Energy Interc... arrow_drop_down Global Energy InterconnectionArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloei.2019.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Energy Interc... arrow_drop_down Global Energy InterconnectionArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloei.2019.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Cheng Cheng; Andrew Blakers; Matthew Stocks; Bin Lu;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Timothy Weber; Ryan Stocks; Andrew Blakers; Anna Nadolny; Cheng Cheng;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu