- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Elsevier BV Authors: Sreejith Aravindakshan; Sreejith Aravindakshan; Harald Kaechele; Muhammad Arshad; +2 AuthorsSreejith Aravindakshan; Sreejith Aravindakshan; Harald Kaechele; Muhammad Arshad; Timothy J. Krupnik; T.S. Amjath-Babu;Several studies estimate the immediate impact of climate change on agricultural societies in terms of changes in crop yields or farm income, though few studies concentrate on the immediate secondary consequences of climate change. This synthetic analysis uses a set of indicators to assess the repercussions of predicted income reductions resulting from climate change on food consumption, nutrition, health expenditure, education, and recreation in Zimbabwe, Cameroon, South Africa and Ethiopia. We also assess the potential decline in human development potential among smallholder dryland farmers in these sub-Saharan African countries. In contrast to previous efforts, the current study directly integrates the uncertainties in estimations of income changes and secondary consequences through a weighting scheme. The results reveal moderate to high levels of secondary impacts which could lead to increased vulnerability to diseases, susceptibility to nutritional disorders, deprivation of educational opportunities, and ultimately to a reduction in human and societal development potential among the considered nations. The article concludes by proposing a portfolio of policy options for ameliorating the secondary impacts of climate change in these sub-Saharan African countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2016.03.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2016.03.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Netherlands, FrancePublisher:Springer Science and Business Media LLC Authors: Pablo Tittonell; Pablo Tittonell; Sreejith Aravindakshan; Sreejith Aravindakshan; +8 AuthorsPablo Tittonell; Pablo Tittonell; Sreejith Aravindakshan; Sreejith Aravindakshan; Sumona Shahrin; Sumona Shahrin; Timothy J. Krupnik; Lenora Ditzler; Kadambot H. M. Siddique; Jeroen C.J. Groot; Jeroen C.J. Groot; Jeroen C.J. Groot;pmid: 34720690
pmc: PMC8550745
AbstractAppreciating and dealing with the plurality of farmers’ perceptions and their contextual knowledge and perspectives of the functioning and performance of their agroecosystems—in other words, their ‘mental models’—is central for appropriate and sustainable agricultural development. In this respect, the sustainable development goals (SDGs) aim to eradicate poverty and food insecurity by 2030 by envisioning social inclusivity that incorporates the preferences and knowledge of key stakeholders, including farmers. Agricultural development interventions and policies directed at sustainable intensification (SI), however, do not sufficiently account for farmers’ perceptions, beliefs, priorities, or interests. Considering two contrasting agroecological systems in coastal Bangladesh, we used a fuzzy cognitive mapping (FCM)-based simulation and sensitivity analysis of mental models of respondents of different farm types from 240 farm households. The employed FCM mental models were able to (1) capture farmers’ perception of farming system concepts and relationships for each farm type and (2) assess the impact of external interventions (drivers) on cropping intensification and food security. We decomposed the FCM models’ variance into the first-order sensitivity index (SVI) and total sensitivity index (TSI) using a winding stairs algorithm. Both within and outside polder areas, the highest TSIs (35–68%) were observed for effects of agricultural extension on changes in other concepts in the map, particularly food security and income (SI indicators), indicating the importance of extension programs for SI. Outside polders, drainage and micro-credit were also influential; within polders, the availability of micro-credit appears to affect farmer perceptions of SI indicators more than drainage. This study demonstrated the importance of reflection on the differing perspectives of farmers both within and outside polders to identify entry points for development interventions. In addition, the study underscores the need for micro-farming systems-level research to assess the context-based feasibility of introduced interventions as perceived by farmers of different farm types.
Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironment Development and SustainabilityArticle . 2021License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-021-01342-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironment Development and SustainabilityArticle . 2021License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-021-01342-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 IndiaPublisher:Springer Science and Business Media LLC Funded by:NSF | FW-HTF-RL: Testing a Resp...NSF| FW-HTF-RL: Testing a Responsible Innovation Approach for Integrating Precision Agriculture (PA) Technologies with Future Farm Workers and W orkAsif Ishtiaque; Timothy J. Krupnik; Vijesh Krishna; Md. Nasir Uddin; Jeetendra Prakash Aryal; Amit Kumar Srivastava; Shalander Kumar; Muhammad Faisal Shahzad; Rajan Bhatt; Maaz Gardezi; Chandra Sekhar Bahinipati; Shahnaz Begum Nazu; Rajiv Ghimire; Asif Reza Anik; Tek B. Sapkota; Madhusudan Ghosh; Roshan Subedi; Asif Sardar; K. M. Zasim Uddin; Arun Khatri-Chhetri; Md. Shahinoor Rahman; null Balwinder-Singh; Meha Jain;Despite the promise of climate-smart agriculture (CSA) to improve food security in South Asia, most CSA practices and technologies have not been widely adopted. We identify the key barriers to CSA adoption in South Asia and suggest strategies to overcome them to increase CSA adoption at scale.
ICRISAT (Internation... arrow_drop_down ICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01905-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert ICRISAT (Internation... arrow_drop_down ICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01905-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 NetherlandsPublisher:Elsevier BV Authors: Muhammad Arshad; Sreejith Aravindakshan; Sreejith Aravindakshan; T.S. Amjath-Babu; +4 AuthorsMuhammad Arshad; Sreejith Aravindakshan; Sreejith Aravindakshan; T.S. Amjath-Babu; Klaus Müller; Harald Kächele; Timothy J. Krupnik; Verena Toussaint;South Asia is the world's most poverty-dense region, where climate change and climate variability are expected to result in increased heat stress and erratic precipitation patterns that affect agricultural productivity. Considerable evidence has been generated on the effects of these stresses on crop yield, though previous research has not yet examined their influence on the economic efficiency of cereal producers. Surveying 240 farmers across eight of Pakistan's twelve agro-ecological zones, we examined the impact of temperature and precipitation anomalies – as indicators of climatic variability – and the number of days when temperature exceeds crop specific heat stress thresholds on the economic efficiency of rice and wheat production. To this end, we employed first-stage stochastic production frontier (SPF) models and second-stage ordinary least square (OLS) and quantile regression models. Both OLS and quantile regressions indicated that terminal heat >34 °C has a significant negative impact on wheat production economic efficiency. Small positive deviation (0.54 °C ± 0.16 SD) of the wheat season's mean temperature from the medium-term historical mean also significantly and negatively affected economic efficiency across all regression models. Heat stress >35.5 °C during rice flowering in the monsoon also had a significant and negative impact. A slight positive deviation in temperature averaging 0.38 °C (±0.11 SD) above the medium-term mean also had significant negative effects across all regressions. Cumulative precipitation conversely had significant yet contrary effects, by offsetting farmers’ investment in supplementary irrigation and increasing economic efficiency. Our results highlight the fact that indicators of climatic variability and heat stress negatively affect the economic efficiency of both rice and wheat producing farmers. Farmers’ education and access to financial and extension services were however both positively associated with economic efficiency. Our findings point to the importance of developing interlinked agronomic, economic and socio-ecological policy strategies to adapt and increase the resilience of Pakistan's cereal systems to climatic variability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2017.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2017.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Huan Liu; Wei Xiong; Diego N.L. Pequeño; Ixchel M. Hernández-Ochoa; Timothy J. Krupnik; Juan Burgueño; Yinlong Xu;handle: 10568/126956
Exploring and quantifying the uncertainties in climate impact assessment with multiple climate-crop models is crucial to reducing the total uncertainty and guiding adaptation strategies for crop production. Here, we carried out a climate-crop ensemble simulation to measure the uncertainty in estimated climate impacts on China's wheat productivity by the 2050s. The ensemble included the simulations conducted with the three-DSSAT wheat model ensemble. As for the future climate, five Global Climate projections (GCMs) under two Representative Concentration Pathways (RCP4.5 and 8.5) and two CO2 concentrations were selected. Our results indicate that the median of simulated yield change was between 4.5% ∼ 5.5%, and -7.7% ∼ -5.6% respectively under elevated and current CO2 concentrations by 2050s compared to 1981–2010. The median of simulated phenology change was nearly -12 ∼ -10 d In percentage terms, higher uncertainty in national yield change was observed compared to phenology change. The total relative contributions of climate projections, crop models, and RCP scenarios have been more than 70% of the total uncertainty of national phenology and yield change. Crop models have accounted for the largest uncertainty of irrigated yield, while crop models and climate projections almost contributed a similar share of the total uncertainty of rainfed yield. These findings highlight the distribution of uncertainty and sources of uncertainty both at the national and grid scales, which would provide a more comprehensive understanding of uncertainties in future yield prediction. Our results also showed that larger uncertainty has been observed in warmer regions (growing season average temperature > 20 °C) than in cooler regions, while the wet regions (growing season rainfall > 400 mm) would suffer smaller uncertainty than dry regions. These findings emphasize the relationships between uncertainty and climate factors, which offers insights for improving crop models and designing adaptation strategies.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/126956Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2022.109187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/126956Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2022.109187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 United States, France, FrancePublisher:Springer Science and Business Media LLC Shah-Al Emran; Timothy J. Krupnik; Sreejith Aravindakshan; Virender Kumar; Cameron M. Pittelkow;AbstractDiversification of smallholder rice-based cropping systems has the potential to increase cropping system intensity and boost food security. However, impacts on resource use efficiencies (e.g., nutrients, energy, and labor) remain poorly understood, highlighting the need to quantify synergies and trade-offs among different sustainability indicators under on-farm conditions. In southern coastal Bangladesh, aman season rice is characterized by low inputs and low productivity. We evaluated the farm-level impacts of cropping system intensification (adding irrigated boro season rice) and diversification (adding chili, groundnut, mungbean, or lathyrus) on seven performance indicators (rice equivalent yield, energy efficiency, partial nitrogen productivity, partial potassium productivity, partial greenhouse gas footprint, benefit-cost ratio, and hired labor energy productivity) based on a comprehensive survey of 501 households. Indicators were combined into a multi-criteria performance index, and their scope for improvement was calculated by comparing an individual farmer’s performance to top-performing farmers (highest 20%). Results indicate that the baseline system (single-crop aman season rice) was the least productive, while double cropped systems increased rice equivalent yield 72–217%. Despite gains in productivity, higher cropping intensity reduced resource use efficiencies due to higher inputs of fertilizer and energy, which also increased production costs, particularly for boro season rice. However, trade-offs were smaller for diversified systems including legumes, largely owing to lower N fertilizer inputs. Aman season rice had the highest multi-criteria performance index, followed by systems with mungbean and lathyrus, indicating the latter are promising options to boost food production and profitability without compromising sustainability. Large gaps between individual and top-performing farmers existed for each indicator, suggesting significant scope for improvement. By targeting indicators contributing most to the multi-criteria performance index (partial nitrogen productivity, energy efficiency, hired labor energy productivity), results suggest further sustainability gains can be achieved through future field research studies focused on optimizing management within diversified systems.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127484Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/54p100g1Data sources: Bielefeld Academic Search Engine (BASE)Agronomy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-022-00795-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127484Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/54p100g1Data sources: Bielefeld Academic Search Engine (BASE)Agronomy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-022-00795-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 United StatesPublisher:Elsevier BV Shah-Al Emran; Shah-Al Emran; Timothy J. Krupnik; Cameron M. Pittelkow; Virender Kumar; M. Yusuf Ali;Farmers in low-elevation coastal zones in South Asia face numerous food security and environmental sustainability challenges. This study evaluated the effects of nitrogen (N) rate and source on the agronomic, economic, and environmental performance of transplanted and rainfed 'aman' (monsoon-season) rice in Bangladesh's non-saline coastal areas. Fifty-one farmers participated in trials distributed across two landscape positions described as 'highlands' (on which field water inundation depth typically remains <30 cm) and 'medium-highlands' (inundation depths 30-90 cm) planted singly with varieties appropriate to each position (BRRI dhan 39 for highlands and the traditional variety Bhushiara for medium-highlands). Researcher designed but farmer-managed dispersed plots were located across three district sub-units (Barisal Sadar, Hizla, Mehendigonj) and compared N source (broadcast prilled urea or deep-placed urea super granules (USG)) at four N rates. Rice grown on medium-highlands did not respond to increasing N rates beyond 28 kg N ha-1, indicating that little fertilization is required to maintain yields and profitability while limiting environmental externalities. In highland locations, clear trade-offs between agronomic and environmental goals were observed. To increase yields and profits for BRRI dhan 39, 50 or 75 kg N ha-1 was often needed, although these rates were associated with declining energy and increasing greenhouse gas (GHG) efficiencies. Compared to prilled urea, USG had no impact on yield, economic, energy and GHG efficiencies in medium-highland locations. USG conversely led to 4.2-5.8% yield improvements at higher N rates on highlands, while also increasing energy efficiency. Given the observed yield, agronomic and economic benefit of USG, our preliminary results that farmers can consider use of USG at 50 kg N ha-1 to produce yields equivalent to 75 kg N ha-1 of prilled urea in highland landscapes, while also reducing environmental externalities. These results suggest that when assessing sustainable intensification (SI) strategies for rice in South Asia's coastal zones, N requirements should be evaluated within specific production contexts (e.g. cultivar type within landscape position) to identify options for increasing yields without negatively influencing environmental and economic indicators. Similar studies in other parts of coastal South Asia could help policy-makers prioritize investments in agriculture with the aim of improving rice productivity while also considering income generation and environmental outcomes.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/8g16829sData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2019.107567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/8g16829sData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2019.107567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:MDPI AG Avay Risal; Anton Urfels; Raghavan Srinivasan; Yared Bayissa; Nirman Shrestha; Gokul P. Paudel; Timothy J. Krupnik;handle: 10568/126440 , 10883/22136
Irrigation-led farming system intensification and efficient use of ground and surface water resources are currently being championed as a crucial ingredient for achieving food security and reducing poverty in Nepal. The potential scope and sustainability of irrigation interventions under current and future climates however remains poorly understood. Potential adaptation options in Western Nepal were analyzed using bias-corrected Regional Climate Model (RCM) data and the Soil and Water Assessment Tool (SWAT) model. The RCM climate change scenario suggested that average annual rainfall will increase by about 4% with occurrence of increased number and intensity of rainfall events in the winter. RCM outputs also suggested that average annual maximum temperature could decrease by 1.4 °C, and average annual minimum temperature may increase by 0.3 °C from 2021 to 2050. Similarly, average monthly streamflow volume could increase by about 65% from March–April, although it could decrease by about 10% in June. Our results highlight the tight hydrological coupling of surface and groundwater. Farmers making use of surface water for irrigation in upstream subbasins may inadvertently cause a decrease in average water availability in downstream subbasins at approximately 14%, which may result in increased need to abstract groundwater to compensate for deficits. Well-designed irrigated crop rotations that fully utilize both surface and groundwater conversely may increase groundwater levels by an average of 45 mm from 2022 to 2050, suggesting that in particular subbasins the cultivation of two crops a year may not cause long-term groundwater depletion. Modeled crop yield for the winter and spring seasons were however lower under future climate change scenarios, even with sufficient irrigation application. Lower yields were associated with shortened growing periods and high temperature stress. Irrigation intensification appears to be feasible if both surface and groundwater resources are appropriately targeted and rationally used. Conjunctive irrigation planning is required for equitable and year-round irrigation supply as neither the streamflow nor groundwater can provide full and year-round irrigation for intensified cropping systems without causing the degradation of natural resources.
Hydrology arrow_drop_down HydrologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2306-5338/9/8/132/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126440Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology9080132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hydrology arrow_drop_down HydrologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2306-5338/9/8/132/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126440Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology9080132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 NetherlandsPublisher:Elsevier BV Authors: Timothy J. Krupnik; Sreejith Aravindakshan; Sreejith Aravindakshan; Frederick Rossi;Escalating energy costs are an increasing concern for South Asian farmers growing rice and wheat in rotation. Millions of people in the IGP (Indo-Gangetic Plains) depend on this cropping system for food and income security. CT (conservation tillage) practices, including mechanical BP (bed planting), PTOS (power-tiller operated seeding), and ST (strip tillage), are advocated by donors and development organizations as profitable, high yielding, and energy-efficient alternatives to TT (traditional tillage). However, most studies on the EUE (energy input use efficiency) of CT originate from researcher-controlled and on-station experiments. Comparatively little information is available on the EUE of CT practices as farmers apply them in their own fields, and under their own management decisions. This research responds to this gap, and analyzes EUE of each of these three CT options, compared to TT, by surveying 328 rice-wheat farmers in north-western Bangladesh. Concentrating on wheat production, we employed a non-parametric benchmarking technique involving slack-based measures of technical efficiency, along with a fractional regression model to identify and compute the wasteful use of energy. PTOS achieved the highest EUE score (0.92), followed closely by BP and ST (both 0.91), whereas TT (0.68) was significantly (p <0.001) different and lower than the CT practices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Public Library of Science (PLoS) Varun Tiwari; Kelly Thorp; Mirela G. Tulbure; Joshua Gray; Mohammad Kamruzzaman; Timothy J. Krupnik; A. Sankarasubramanian; Marcelo Ardon;Timely and accurately estimating rice yields is crucial for supporting food security management, agricultural policy development, and climate change adaptation in rice-producing countries such as Bangladesh. To address this need, this study introduced a workflow to enable timely and precise rice yield estimation at a sub-district scale (1,000-meter spatial resolution). However, a significant gap exists in the application of remote sensing methods for government-reported rice yield estimation for food security management at high spatial resolution. Current methods are limited to specific regions and primarily used for research, lacking integration into national reporting systems. Additionally, there is no consistent yearly boro rice yield map at a sub-district scale, hindering localized agricultural decision-making. This workflow leveraged MODIS and annual district-level yield data to train a random forest model for estimating boro rice yields at a 1,000-meter resolution from 2002 to 2021. The results revealed a mean percentage root mean square error (RMSE) of 8.07% and 12.96% when validation was conducted using reported district yields and crop-cut yield data, respectively. Additionally, the estimated yield of boro rice varies with an uncertainty range between 0.40 and 0.45 tons per hectare across Bangladesh. Furthermore, a trend analysis was performed on the estimated boro rice yield data from 2002 to 2021 using the modified Mann-Kendall trend test with a 95% confidence interval (p < 0.05). In Bangladesh, 23% of the rice area exhibits an increasing trend in boro rice yield, 0.11% shows a decreasing trend, and 76.51% of the area demonstrates no trend in rice yield. Given that this is the first attempt to estimate boro rice yield at 1,000-meter spatial resolution over two decades in Bangladesh, the estimated mid-season boro rice yield estimates are scalable across space and time, offering significant potential for strengthening food security management in Bangladesh. Furthermore, the proposed workflow can be easily applied to estimate rice yields in other regions worldwide.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0309982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0309982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Elsevier BV Authors: Sreejith Aravindakshan; Sreejith Aravindakshan; Harald Kaechele; Muhammad Arshad; +2 AuthorsSreejith Aravindakshan; Sreejith Aravindakshan; Harald Kaechele; Muhammad Arshad; Timothy J. Krupnik; T.S. Amjath-Babu;Several studies estimate the immediate impact of climate change on agricultural societies in terms of changes in crop yields or farm income, though few studies concentrate on the immediate secondary consequences of climate change. This synthetic analysis uses a set of indicators to assess the repercussions of predicted income reductions resulting from climate change on food consumption, nutrition, health expenditure, education, and recreation in Zimbabwe, Cameroon, South Africa and Ethiopia. We also assess the potential decline in human development potential among smallholder dryland farmers in these sub-Saharan African countries. In contrast to previous efforts, the current study directly integrates the uncertainties in estimations of income changes and secondary consequences through a weighting scheme. The results reveal moderate to high levels of secondary impacts which could lead to increased vulnerability to diseases, susceptibility to nutritional disorders, deprivation of educational opportunities, and ultimately to a reduction in human and societal development potential among the considered nations. The article concludes by proposing a portfolio of policy options for ameliorating the secondary impacts of climate change in these sub-Saharan African countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2016.03.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2016.03.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Netherlands, FrancePublisher:Springer Science and Business Media LLC Authors: Pablo Tittonell; Pablo Tittonell; Sreejith Aravindakshan; Sreejith Aravindakshan; +8 AuthorsPablo Tittonell; Pablo Tittonell; Sreejith Aravindakshan; Sreejith Aravindakshan; Sumona Shahrin; Sumona Shahrin; Timothy J. Krupnik; Lenora Ditzler; Kadambot H. M. Siddique; Jeroen C.J. Groot; Jeroen C.J. Groot; Jeroen C.J. Groot;pmid: 34720690
pmc: PMC8550745
AbstractAppreciating and dealing with the plurality of farmers’ perceptions and their contextual knowledge and perspectives of the functioning and performance of their agroecosystems—in other words, their ‘mental models’—is central for appropriate and sustainable agricultural development. In this respect, the sustainable development goals (SDGs) aim to eradicate poverty and food insecurity by 2030 by envisioning social inclusivity that incorporates the preferences and knowledge of key stakeholders, including farmers. Agricultural development interventions and policies directed at sustainable intensification (SI), however, do not sufficiently account for farmers’ perceptions, beliefs, priorities, or interests. Considering two contrasting agroecological systems in coastal Bangladesh, we used a fuzzy cognitive mapping (FCM)-based simulation and sensitivity analysis of mental models of respondents of different farm types from 240 farm households. The employed FCM mental models were able to (1) capture farmers’ perception of farming system concepts and relationships for each farm type and (2) assess the impact of external interventions (drivers) on cropping intensification and food security. We decomposed the FCM models’ variance into the first-order sensitivity index (SVI) and total sensitivity index (TSI) using a winding stairs algorithm. Both within and outside polder areas, the highest TSIs (35–68%) were observed for effects of agricultural extension on changes in other concepts in the map, particularly food security and income (SI indicators), indicating the importance of extension programs for SI. Outside polders, drainage and micro-credit were also influential; within polders, the availability of micro-credit appears to affect farmer perceptions of SI indicators more than drainage. This study demonstrated the importance of reflection on the differing perspectives of farmers both within and outside polders to identify entry points for development interventions. In addition, the study underscores the need for micro-farming systems-level research to assess the context-based feasibility of introduced interventions as perceived by farmers of different farm types.
Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironment Development and SustainabilityArticle . 2021License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-021-01342-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironment Development and SustainabilityArticle . 2021License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-021-01342-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 IndiaPublisher:Springer Science and Business Media LLC Funded by:NSF | FW-HTF-RL: Testing a Resp...NSF| FW-HTF-RL: Testing a Responsible Innovation Approach for Integrating Precision Agriculture (PA) Technologies with Future Farm Workers and W orkAsif Ishtiaque; Timothy J. Krupnik; Vijesh Krishna; Md. Nasir Uddin; Jeetendra Prakash Aryal; Amit Kumar Srivastava; Shalander Kumar; Muhammad Faisal Shahzad; Rajan Bhatt; Maaz Gardezi; Chandra Sekhar Bahinipati; Shahnaz Begum Nazu; Rajiv Ghimire; Asif Reza Anik; Tek B. Sapkota; Madhusudan Ghosh; Roshan Subedi; Asif Sardar; K. M. Zasim Uddin; Arun Khatri-Chhetri; Md. Shahinoor Rahman; null Balwinder-Singh; Meha Jain;Despite the promise of climate-smart agriculture (CSA) to improve food security in South Asia, most CSA practices and technologies have not been widely adopted. We identify the key barriers to CSA adoption in South Asia and suggest strategies to overcome them to increase CSA adoption at scale.
ICRISAT (Internation... arrow_drop_down ICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01905-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert ICRISAT (Internation... arrow_drop_down ICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01905-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 NetherlandsPublisher:Elsevier BV Authors: Muhammad Arshad; Sreejith Aravindakshan; Sreejith Aravindakshan; T.S. Amjath-Babu; +4 AuthorsMuhammad Arshad; Sreejith Aravindakshan; Sreejith Aravindakshan; T.S. Amjath-Babu; Klaus Müller; Harald Kächele; Timothy J. Krupnik; Verena Toussaint;South Asia is the world's most poverty-dense region, where climate change and climate variability are expected to result in increased heat stress and erratic precipitation patterns that affect agricultural productivity. Considerable evidence has been generated on the effects of these stresses on crop yield, though previous research has not yet examined their influence on the economic efficiency of cereal producers. Surveying 240 farmers across eight of Pakistan's twelve agro-ecological zones, we examined the impact of temperature and precipitation anomalies – as indicators of climatic variability – and the number of days when temperature exceeds crop specific heat stress thresholds on the economic efficiency of rice and wheat production. To this end, we employed first-stage stochastic production frontier (SPF) models and second-stage ordinary least square (OLS) and quantile regression models. Both OLS and quantile regressions indicated that terminal heat >34 °C has a significant negative impact on wheat production economic efficiency. Small positive deviation (0.54 °C ± 0.16 SD) of the wheat season's mean temperature from the medium-term historical mean also significantly and negatively affected economic efficiency across all regression models. Heat stress >35.5 °C during rice flowering in the monsoon also had a significant and negative impact. A slight positive deviation in temperature averaging 0.38 °C (±0.11 SD) above the medium-term mean also had significant negative effects across all regressions. Cumulative precipitation conversely had significant yet contrary effects, by offsetting farmers’ investment in supplementary irrigation and increasing economic efficiency. Our results highlight the fact that indicators of climatic variability and heat stress negatively affect the economic efficiency of both rice and wheat producing farmers. Farmers’ education and access to financial and extension services were however both positively associated with economic efficiency. Our findings point to the importance of developing interlinked agronomic, economic and socio-ecological policy strategies to adapt and increase the resilience of Pakistan's cereal systems to climatic variability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2017.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2017.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Huan Liu; Wei Xiong; Diego N.L. Pequeño; Ixchel M. Hernández-Ochoa; Timothy J. Krupnik; Juan Burgueño; Yinlong Xu;handle: 10568/126956
Exploring and quantifying the uncertainties in climate impact assessment with multiple climate-crop models is crucial to reducing the total uncertainty and guiding adaptation strategies for crop production. Here, we carried out a climate-crop ensemble simulation to measure the uncertainty in estimated climate impacts on China's wheat productivity by the 2050s. The ensemble included the simulations conducted with the three-DSSAT wheat model ensemble. As for the future climate, five Global Climate projections (GCMs) under two Representative Concentration Pathways (RCP4.5 and 8.5) and two CO2 concentrations were selected. Our results indicate that the median of simulated yield change was between 4.5% ∼ 5.5%, and -7.7% ∼ -5.6% respectively under elevated and current CO2 concentrations by 2050s compared to 1981–2010. The median of simulated phenology change was nearly -12 ∼ -10 d In percentage terms, higher uncertainty in national yield change was observed compared to phenology change. The total relative contributions of climate projections, crop models, and RCP scenarios have been more than 70% of the total uncertainty of national phenology and yield change. Crop models have accounted for the largest uncertainty of irrigated yield, while crop models and climate projections almost contributed a similar share of the total uncertainty of rainfed yield. These findings highlight the distribution of uncertainty and sources of uncertainty both at the national and grid scales, which would provide a more comprehensive understanding of uncertainties in future yield prediction. Our results also showed that larger uncertainty has been observed in warmer regions (growing season average temperature > 20 °C) than in cooler regions, while the wet regions (growing season rainfall > 400 mm) would suffer smaller uncertainty than dry regions. These findings emphasize the relationships between uncertainty and climate factors, which offers insights for improving crop models and designing adaptation strategies.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/126956Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2022.109187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/126956Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2022.109187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 United States, France, FrancePublisher:Springer Science and Business Media LLC Shah-Al Emran; Timothy J. Krupnik; Sreejith Aravindakshan; Virender Kumar; Cameron M. Pittelkow;AbstractDiversification of smallholder rice-based cropping systems has the potential to increase cropping system intensity and boost food security. However, impacts on resource use efficiencies (e.g., nutrients, energy, and labor) remain poorly understood, highlighting the need to quantify synergies and trade-offs among different sustainability indicators under on-farm conditions. In southern coastal Bangladesh, aman season rice is characterized by low inputs and low productivity. We evaluated the farm-level impacts of cropping system intensification (adding irrigated boro season rice) and diversification (adding chili, groundnut, mungbean, or lathyrus) on seven performance indicators (rice equivalent yield, energy efficiency, partial nitrogen productivity, partial potassium productivity, partial greenhouse gas footprint, benefit-cost ratio, and hired labor energy productivity) based on a comprehensive survey of 501 households. Indicators were combined into a multi-criteria performance index, and their scope for improvement was calculated by comparing an individual farmer’s performance to top-performing farmers (highest 20%). Results indicate that the baseline system (single-crop aman season rice) was the least productive, while double cropped systems increased rice equivalent yield 72–217%. Despite gains in productivity, higher cropping intensity reduced resource use efficiencies due to higher inputs of fertilizer and energy, which also increased production costs, particularly for boro season rice. However, trade-offs were smaller for diversified systems including legumes, largely owing to lower N fertilizer inputs. Aman season rice had the highest multi-criteria performance index, followed by systems with mungbean and lathyrus, indicating the latter are promising options to boost food production and profitability without compromising sustainability. Large gaps between individual and top-performing farmers existed for each indicator, suggesting significant scope for improvement. By targeting indicators contributing most to the multi-criteria performance index (partial nitrogen productivity, energy efficiency, hired labor energy productivity), results suggest further sustainability gains can be achieved through future field research studies focused on optimizing management within diversified systems.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127484Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/54p100g1Data sources: Bielefeld Academic Search Engine (BASE)Agronomy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-022-00795-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127484Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/54p100g1Data sources: Bielefeld Academic Search Engine (BASE)Agronomy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-022-00795-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 United StatesPublisher:Elsevier BV Shah-Al Emran; Shah-Al Emran; Timothy J. Krupnik; Cameron M. Pittelkow; Virender Kumar; M. Yusuf Ali;Farmers in low-elevation coastal zones in South Asia face numerous food security and environmental sustainability challenges. This study evaluated the effects of nitrogen (N) rate and source on the agronomic, economic, and environmental performance of transplanted and rainfed 'aman' (monsoon-season) rice in Bangladesh's non-saline coastal areas. Fifty-one farmers participated in trials distributed across two landscape positions described as 'highlands' (on which field water inundation depth typically remains <30 cm) and 'medium-highlands' (inundation depths 30-90 cm) planted singly with varieties appropriate to each position (BRRI dhan 39 for highlands and the traditional variety Bhushiara for medium-highlands). Researcher designed but farmer-managed dispersed plots were located across three district sub-units (Barisal Sadar, Hizla, Mehendigonj) and compared N source (broadcast prilled urea or deep-placed urea super granules (USG)) at four N rates. Rice grown on medium-highlands did not respond to increasing N rates beyond 28 kg N ha-1, indicating that little fertilization is required to maintain yields and profitability while limiting environmental externalities. In highland locations, clear trade-offs between agronomic and environmental goals were observed. To increase yields and profits for BRRI dhan 39, 50 or 75 kg N ha-1 was often needed, although these rates were associated with declining energy and increasing greenhouse gas (GHG) efficiencies. Compared to prilled urea, USG had no impact on yield, economic, energy and GHG efficiencies in medium-highland locations. USG conversely led to 4.2-5.8% yield improvements at higher N rates on highlands, while also increasing energy efficiency. Given the observed yield, agronomic and economic benefit of USG, our preliminary results that farmers can consider use of USG at 50 kg N ha-1 to produce yields equivalent to 75 kg N ha-1 of prilled urea in highland landscapes, while also reducing environmental externalities. These results suggest that when assessing sustainable intensification (SI) strategies for rice in South Asia's coastal zones, N requirements should be evaluated within specific production contexts (e.g. cultivar type within landscape position) to identify options for increasing yields without negatively influencing environmental and economic indicators. Similar studies in other parts of coastal South Asia could help policy-makers prioritize investments in agriculture with the aim of improving rice productivity while also considering income generation and environmental outcomes.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/8g16829sData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2019.107567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/8g16829sData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2019.107567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:MDPI AG Avay Risal; Anton Urfels; Raghavan Srinivasan; Yared Bayissa; Nirman Shrestha; Gokul P. Paudel; Timothy J. Krupnik;handle: 10568/126440 , 10883/22136
Irrigation-led farming system intensification and efficient use of ground and surface water resources are currently being championed as a crucial ingredient for achieving food security and reducing poverty in Nepal. The potential scope and sustainability of irrigation interventions under current and future climates however remains poorly understood. Potential adaptation options in Western Nepal were analyzed using bias-corrected Regional Climate Model (RCM) data and the Soil and Water Assessment Tool (SWAT) model. The RCM climate change scenario suggested that average annual rainfall will increase by about 4% with occurrence of increased number and intensity of rainfall events in the winter. RCM outputs also suggested that average annual maximum temperature could decrease by 1.4 °C, and average annual minimum temperature may increase by 0.3 °C from 2021 to 2050. Similarly, average monthly streamflow volume could increase by about 65% from March–April, although it could decrease by about 10% in June. Our results highlight the tight hydrological coupling of surface and groundwater. Farmers making use of surface water for irrigation in upstream subbasins may inadvertently cause a decrease in average water availability in downstream subbasins at approximately 14%, which may result in increased need to abstract groundwater to compensate for deficits. Well-designed irrigated crop rotations that fully utilize both surface and groundwater conversely may increase groundwater levels by an average of 45 mm from 2022 to 2050, suggesting that in particular subbasins the cultivation of two crops a year may not cause long-term groundwater depletion. Modeled crop yield for the winter and spring seasons were however lower under future climate change scenarios, even with sufficient irrigation application. Lower yields were associated with shortened growing periods and high temperature stress. Irrigation intensification appears to be feasible if both surface and groundwater resources are appropriately targeted and rationally used. Conjunctive irrigation planning is required for equitable and year-round irrigation supply as neither the streamflow nor groundwater can provide full and year-round irrigation for intensified cropping systems without causing the degradation of natural resources.
Hydrology arrow_drop_down HydrologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2306-5338/9/8/132/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126440Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology9080132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hydrology arrow_drop_down HydrologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2306-5338/9/8/132/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126440Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology9080132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 NetherlandsPublisher:Elsevier BV Authors: Timothy J. Krupnik; Sreejith Aravindakshan; Sreejith Aravindakshan; Frederick Rossi;Escalating energy costs are an increasing concern for South Asian farmers growing rice and wheat in rotation. Millions of people in the IGP (Indo-Gangetic Plains) depend on this cropping system for food and income security. CT (conservation tillage) practices, including mechanical BP (bed planting), PTOS (power-tiller operated seeding), and ST (strip tillage), are advocated by donors and development organizations as profitable, high yielding, and energy-efficient alternatives to TT (traditional tillage). However, most studies on the EUE (energy input use efficiency) of CT originate from researcher-controlled and on-station experiments. Comparatively little information is available on the EUE of CT practices as farmers apply them in their own fields, and under their own management decisions. This research responds to this gap, and analyzes EUE of each of these three CT options, compared to TT, by surveying 328 rice-wheat farmers in north-western Bangladesh. Concentrating on wheat production, we employed a non-parametric benchmarking technique involving slack-based measures of technical efficiency, along with a fractional regression model to identify and compute the wasteful use of energy. PTOS achieved the highest EUE score (0.92), followed closely by BP and ST (both 0.91), whereas TT (0.68) was significantly (p <0.001) different and lower than the CT practices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Public Library of Science (PLoS) Varun Tiwari; Kelly Thorp; Mirela G. Tulbure; Joshua Gray; Mohammad Kamruzzaman; Timothy J. Krupnik; A. Sankarasubramanian; Marcelo Ardon;Timely and accurately estimating rice yields is crucial for supporting food security management, agricultural policy development, and climate change adaptation in rice-producing countries such as Bangladesh. To address this need, this study introduced a workflow to enable timely and precise rice yield estimation at a sub-district scale (1,000-meter spatial resolution). However, a significant gap exists in the application of remote sensing methods for government-reported rice yield estimation for food security management at high spatial resolution. Current methods are limited to specific regions and primarily used for research, lacking integration into national reporting systems. Additionally, there is no consistent yearly boro rice yield map at a sub-district scale, hindering localized agricultural decision-making. This workflow leveraged MODIS and annual district-level yield data to train a random forest model for estimating boro rice yields at a 1,000-meter resolution from 2002 to 2021. The results revealed a mean percentage root mean square error (RMSE) of 8.07% and 12.96% when validation was conducted using reported district yields and crop-cut yield data, respectively. Additionally, the estimated yield of boro rice varies with an uncertainty range between 0.40 and 0.45 tons per hectare across Bangladesh. Furthermore, a trend analysis was performed on the estimated boro rice yield data from 2002 to 2021 using the modified Mann-Kendall trend test with a 95% confidence interval (p < 0.05). In Bangladesh, 23% of the rice area exhibits an increasing trend in boro rice yield, 0.11% shows a decreasing trend, and 76.51% of the area demonstrates no trend in rice yield. Given that this is the first attempt to estimate boro rice yield at 1,000-meter spatial resolution over two decades in Bangladesh, the estimated mid-season boro rice yield estimates are scalable across space and time, offering significant potential for strengthening food security management in Bangladesh. Furthermore, the proposed workflow can be easily applied to estimate rice yields in other regions worldwide.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0309982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0309982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu