- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: David Borge-Diez; Daniel Icaza; Diego Francisco Trujillo-Cueva; Emin Açıkkalp;[EN] Buildings are one of the most important energy consumers worldwide and heating requirements are usually achieved using fossil fuels. This situation poses a risk to achieving the objectives for emissions reduction in existing buildings and electrification, based on heat pumps. It is one of the most feasible solutions to achieve emissions reduction objectives. Current research analyzes the potential for decarbonization of heat pumps and uses the Spanish scenario as a novel case study, where 8.5% of carbon dioxide emissions into the atmosphere came from the residential sector, with 66% of the energy consumption associated with cooling and heating. Using EnergyPlan the potential of decarbonization using heat pumps or heating systems in existing buildings and installing this technology in new buildings is analyzed. Results show a reduction of 8.43% in total emissions and prove that the proposed methodology can be extended worldwide as a solution to reduce emissions and improve energy efficiency in existent heating systems in buildings. Moreover, the integration of electrical climatization systems allows increasing the renewable electricity share in the grid or electrical vehicles integration, among others. © 2022 Elsevier Ltd SI
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: David Borge-Diez; Daniel Icaza; Diego Francisco Trujillo-Cueva; Emin Açıkkalp;[EN] Buildings are one of the most important energy consumers worldwide and heating requirements are usually achieved using fossil fuels. This situation poses a risk to achieving the objectives for emissions reduction in existing buildings and electrification, based on heat pumps. It is one of the most feasible solutions to achieve emissions reduction objectives. Current research analyzes the potential for decarbonization of heat pumps and uses the Spanish scenario as a novel case study, where 8.5% of carbon dioxide emissions into the atmosphere came from the residential sector, with 66% of the energy consumption associated with cooling and heating. Using EnergyPlan the potential of decarbonization using heat pumps or heating systems in existing buildings and installing this technology in new buildings is analyzed. Results show a reduction of 8.43% in total emissions and prove that the proposed methodology can be extended worldwide as a solution to reduce emissions and improve energy efficiency in existent heating systems in buildings. Moreover, the integration of electrical climatization systems allows increasing the renewable electricity share in the grid or electrical vehicles integration, among others. © 2022 Elsevier Ltd SI
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu