- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 FrancePublisher:Wiley Funded by:ANR | CBH-EUR-GS, EC | AGREENSKILLSPLUSANR| CBH-EUR-GS ,EC| AGREENSKILLSPLUSVítor da Silveira Falavigna; Edouard Severing; Xuelei Lai; Joan Estevan; Isabelle Farrera; Véronique Hugouvieux; Luís Fernando Revers; Chloe Zubieta; George Coupland; Evelyne Costes; Fernando Andrés;Summary A group of MADS transcription factors (TFs) are believed to control temperature‐mediated bud dormancy. These TFs, called DORMANCY‐ASSOCIATED MADS‐BOX (DAM), are encoded by genes similar to SHORT VEGETATIVE PHASE (SVP) from Arabidopsis. MADS proteins form transcriptional complexes whose combinatory composition defines their molecular function. However, how MADS multimeric complexes control the dormancy cycle in trees is unclear. Apple MdDAM and other dormancy‐related MADS proteins form complexes with MdSVPa, which is essential for the ability of transcriptional complexes to bind to DNA. Sequential DNA‐affinity purification sequencing (seq‐DAP‐seq) was performed to identify the genome‐wide binding sites of apple MADS TF complexes. Target genes associated with the binding sites were identified by combining seq‐DAP‐seq data with transcriptomics datasets obtained using a glucocorticoid receptor fusion system, and RNA‐seq data related to apple dormancy. We describe a gene regulatory network (GRN) formed by MdSVPa‐containing complexes, which regulate the dormancy cycle in response to environmental cues and hormonal signaling pathways. Additionally, novel molecular evidence regarding the evolutionary functional segregation between DAM and SVP proteins in the Rosaceae is presented. MdSVPa sequentially forms complexes with the MADS TFs that predominate at each dormancy phase, altering its DNA‐binding specificity and, therefore, the transcriptional regulation of its target genes.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03338801Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03338801Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03338801Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03338801Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 FrancePublisher:Wiley Funded by:ANR | CBH-EUR-GS, EC | AGREENSKILLSPLUSANR| CBH-EUR-GS ,EC| AGREENSKILLSPLUSVítor da Silveira Falavigna; Edouard Severing; Xuelei Lai; Joan Estevan; Isabelle Farrera; Véronique Hugouvieux; Luís Fernando Revers; Chloe Zubieta; George Coupland; Evelyne Costes; Fernando Andrés;Summary A group of MADS transcription factors (TFs) are believed to control temperature‐mediated bud dormancy. These TFs, called DORMANCY‐ASSOCIATED MADS‐BOX (DAM), are encoded by genes similar to SHORT VEGETATIVE PHASE (SVP) from Arabidopsis. MADS proteins form transcriptional complexes whose combinatory composition defines their molecular function. However, how MADS multimeric complexes control the dormancy cycle in trees is unclear. Apple MdDAM and other dormancy‐related MADS proteins form complexes with MdSVPa, which is essential for the ability of transcriptional complexes to bind to DNA. Sequential DNA‐affinity purification sequencing (seq‐DAP‐seq) was performed to identify the genome‐wide binding sites of apple MADS TF complexes. Target genes associated with the binding sites were identified by combining seq‐DAP‐seq data with transcriptomics datasets obtained using a glucocorticoid receptor fusion system, and RNA‐seq data related to apple dormancy. We describe a gene regulatory network (GRN) formed by MdSVPa‐containing complexes, which regulate the dormancy cycle in response to environmental cues and hormonal signaling pathways. Additionally, novel molecular evidence regarding the evolutionary functional segregation between DAM and SVP proteins in the Rosaceae is presented. MdSVPa sequentially forms complexes with the MADS TFs that predominate at each dormancy phase, altering its DNA‐binding specificity and, therefore, the transcriptional regulation of its target genes.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03338801Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03338801Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03338801Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03338801Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu