Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
14 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    orcid Amir Abdollahi;
    Amir Abdollahi
    ORCID
    Harvested from ORCID Public Data File

    Amir Abdollahi in OpenAIRE
    orcid Mohammad Reza Salehizadeh;
    Mohammad Reza Salehizadeh
    ORCID
    Harvested from ORCID Public Data File

    Mohammad Reza Salehizadeh in OpenAIRE
    +1 Authors

    AbstractThe integration of energy efficiency programs and renewable resources in energy communities (EC) incorporating smart microgrids might be the future development of sustainable cities. Cooperation among EC with high penetration of renewable energy resources will support energy procurement. Mutual energy efficiency programs in EC associated with deploying renewable resources can guarantee sustainable development significantly. This paper proposes a new sustainability index (SI) influenced by the loss of load reduction while increasing the penetration of renewable energies. A multi‐objective optimization method is used to determine the optimal size and location of renewable resources incorporating energy efficiency programs. The objective functions, that is, the total cost and SI, are based upon social, economic, environmental, and technical (SEET) considerations. Since the outputs of renewable energies are uncertain, it may increase the loss of load probability. Therefore, this paper introduces a model that can handle the uncertainties of renewable energies. A new method so‐called adaptive multi‐objective crow search algorithm (AMCSA) is developed for the trade‐off between cost and sustainability in the optimization problem. The proposed methodology cannot only minimize the total cost in EC but also will maximize the SI. Simulation studies and results analysis indicates the effectiveness of the proposed methodology for the development of sustainability and renewable energies in the smart grid.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IET Renewable Power Generation
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IET Renewable Power Generation
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    orcid Amir Abdollahi;
    Amir Abdollahi
    ORCID
    Harvested from ORCID Public Data File

    Amir Abdollahi in OpenAIRE
    orcid Mohammad Reza Salehizadeh;
    Mohammad Reza Salehizadeh
    ORCID
    Harvested from ORCID Public Data File

    Mohammad Reza Salehizadeh in OpenAIRE
    +1 Authors

    AbstractThe integration of energy efficiency programs and renewable resources in energy communities (EC) incorporating smart microgrids might be the future development of sustainable cities. Cooperation among EC with high penetration of renewable energy resources will support energy procurement. Mutual energy efficiency programs in EC associated with deploying renewable resources can guarantee sustainable development significantly. This paper proposes a new sustainability index (SI) influenced by the loss of load reduction while increasing the penetration of renewable energies. A multi‐objective optimization method is used to determine the optimal size and location of renewable resources incorporating energy efficiency programs. The objective functions, that is, the total cost and SI, are based upon social, economic, environmental, and technical (SEET) considerations. Since the outputs of renewable energies are uncertain, it may increase the loss of load probability. Therefore, this paper introduces a model that can handle the uncertainties of renewable energies. A new method so‐called adaptive multi‐objective crow search algorithm (AMCSA) is developed for the trade‐off between cost and sustainability in the optimization problem. The proposed methodology cannot only minimize the total cost in EC but also will maximize the SI. Simulation studies and results analysis indicates the effectiveness of the proposed methodology for the development of sustainability and renewable energies in the smart grid.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IET Renewable Power Generation
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IET Renewable Power Generation
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Amir Abdollahi;
    Amir Abdollahi
    ORCID
    Harvested from ORCID Public Data File

    Amir Abdollahi in OpenAIRE
    orcid Alireza Bakhshai;
    Alireza Bakhshai
    ORCID
    Harvested from ORCID Public Data File

    Alireza Bakhshai in OpenAIRE

    The flexibility of smart grids has become an important issue due to the increasing penetration of uncertain energy resources, such as renewable as well as virtual power plants in the smart grids. Flexibility sources, such as demand response (DR) programs and plug-in electric vehicles (PEVs), can help the smart grid to be more productive. Although the renewable power plants are considered as flexible tools, they are somehow uncertain by themselves. In this article, the uncertainty of power generation of renewable resources has been resolved by incorporating the DR programs and PEVs. A stochastic decision making model for the coordinated operation of renewable resources and some virtual power generation is presented to solve a risk-constrained optimal bidding strategy for a smart grid. The participation of DR and PEV aggregators in the day-ahead market is considered. The uncertainty in day-ahead prices associated with renewable power generation is discussed throughout this article. As a well-known measure, the conditional value at risk is employed in the model to cope with all aforementioned uncertainties. Numerical studies and result analysis show that the expected profit of these resources is increased and the related risk is reduced significantly.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Systems Journalarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Systems Journal
    Article . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Systems Journalarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Systems Journal
      Article . 2021 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Amir Abdollahi;
    Amir Abdollahi
    ORCID
    Harvested from ORCID Public Data File

    Amir Abdollahi in OpenAIRE
    orcid Alireza Bakhshai;
    Alireza Bakhshai
    ORCID
    Harvested from ORCID Public Data File

    Alireza Bakhshai in OpenAIRE

    The flexibility of smart grids has become an important issue due to the increasing penetration of uncertain energy resources, such as renewable as well as virtual power plants in the smart grids. Flexibility sources, such as demand response (DR) programs and plug-in electric vehicles (PEVs), can help the smart grid to be more productive. Although the renewable power plants are considered as flexible tools, they are somehow uncertain by themselves. In this article, the uncertainty of power generation of renewable resources has been resolved by incorporating the DR programs and PEVs. A stochastic decision making model for the coordinated operation of renewable resources and some virtual power generation is presented to solve a risk-constrained optimal bidding strategy for a smart grid. The participation of DR and PEV aggregators in the day-ahead market is considered. The uncertainty in day-ahead prices associated with renewable power generation is discussed throughout this article. As a well-known measure, the conditional value at risk is employed in the model to cope with all aforementioned uncertainties. Numerical studies and result analysis show that the expected profit of these resources is increased and the related risk is reduced significantly.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Systems Journalarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Systems Journal
    Article . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Systems Journalarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Systems Journal
      Article . 2021 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Mohammadreza Barzegar;
    Mohammadreza Barzegar
    ORCID
    Harvested from ORCID Public Data File

    Mohammadreza Barzegar in OpenAIRE
    orcid Amir Abdollahi;
    Amir Abdollahi
    ORCID
    Harvested from ORCID Public Data File

    Amir Abdollahi in OpenAIRE
    orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    +2 Authors

    Abstract Energy efficiency program (EEP) is one of the demand-side management programs that can solve the demand-side and network-side problems. In this paper, a new concept of energy efficiency (EE) on the microgrid considering economic and technical impacts is introduced. The impacts of EE are considered on sitting of green virtual resources such as EEP as well as wind and solar power plants. The EE consists of two terms, economic and technical terms that are introduced in this paper. New indexes such as the efficient reliability index (ERI) are introduced to evaluate the EE. The presented model is implemented on the IEEE standard 33-bus test system. The model of the problem is the mixed integer non-linear programming (MINLP) and the problem is solved by the genetic algorithm in the MATLAB software. The results show the effectiveness of the proposed method and the presented model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Mohammadreza Barzegar;
    Mohammadreza Barzegar
    ORCID
    Harvested from ORCID Public Data File

    Mohammadreza Barzegar in OpenAIRE
    orcid Amir Abdollahi;
    Amir Abdollahi
    ORCID
    Harvested from ORCID Public Data File

    Amir Abdollahi in OpenAIRE
    orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    +2 Authors

    Abstract Energy efficiency program (EEP) is one of the demand-side management programs that can solve the demand-side and network-side problems. In this paper, a new concept of energy efficiency (EE) on the microgrid considering economic and technical impacts is introduced. The impacts of EE are considered on sitting of green virtual resources such as EEP as well as wind and solar power plants. The EE consists of two terms, economic and technical terms that are introduced in this paper. New indexes such as the efficient reliability index (ERI) are introduced to evaluate the EE. The presented model is implemented on the IEEE standard 33-bus test system. The model of the problem is the mixed integer non-linear programming (MINLP) and the problem is solved by the genetic algorithm in the MATLAB software. The results show the effectiveness of the proposed method and the presented model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Farshid Keynia;
    Farshid Keynia
    ORCID
    Harvested from ORCID Public Data File

    Farshid Keynia in OpenAIRE
    orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE

    Abstract Maintenance of distribution systems has become more important due to the need to increase energy availability, quality and safety, and also reduce operation cost. Accordingly, the maintenance strategy in distribution systems is one of the most important decision-making activities. One of the most important evaluations for deciding the adequate performance of power distribution system is the identification of the critical components. On the other hand, the budget for maintenance of components is limited, so the maintenance should only be performed on critical components. Identifying the critical components is used to achieve the objective of minimising the cost for maintenance actions. This paper presents a new weighted importance (WI) reliability index model and proposes an appropriate method in order to prioritise the elements of distribution system for reliability-centered maintenance (RCM) at two different levels. At the first level, the feeders of a sample distribution substation are prioritised for the RCM actions. The second level is more detailed than the first level. At the second level, the components of a sample feeder are prioritised for the RCM actions. The reliability of system can be increased to as much as required level while minimal maintenance to be done by the maintenance prioritisation of the system components and performing the maintenance actions on the critical components. Appropriate maintenance decision-making for the critical components of distribution system can lead to the improvement in the reliability of distribution system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    54
    citations54
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Farshid Keynia;
    Farshid Keynia
    ORCID
    Harvested from ORCID Public Data File

    Farshid Keynia in OpenAIRE
    orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE

    Abstract Maintenance of distribution systems has become more important due to the need to increase energy availability, quality and safety, and also reduce operation cost. Accordingly, the maintenance strategy in distribution systems is one of the most important decision-making activities. One of the most important evaluations for deciding the adequate performance of power distribution system is the identification of the critical components. On the other hand, the budget for maintenance of components is limited, so the maintenance should only be performed on critical components. Identifying the critical components is used to achieve the objective of minimising the cost for maintenance actions. This paper presents a new weighted importance (WI) reliability index model and proposes an appropriate method in order to prioritise the elements of distribution system for reliability-centered maintenance (RCM) at two different levels. At the first level, the feeders of a sample distribution substation are prioritised for the RCM actions. The second level is more detailed than the first level. At the second level, the components of a sample feeder are prioritised for the RCM actions. The reliability of system can be increased to as much as required level while minimal maintenance to be done by the maintenance prioritisation of the system components and performing the maintenance actions on the critical components. Appropriate maintenance decision-making for the critical components of distribution system can lead to the improvement in the reliability of distribution system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    54
    citations54
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nadia Anjom Shoa; orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    Masoud Rashidinejad; orcid Alireza Bakhshai;
    Alireza Bakhshai
    ORCID
    Harvested from ORCID Public Data File

    Alireza Bakhshai in OpenAIRE
    +1 Authors

    Abstract This paper presents a new available efficiency index (AEI) and then optimizes it in order to increase the number of hours the load is supplied while decrease the losses as well as expected energy not supplied in a smart grid. The effectiveness of the presence of energy storage system (ESS) along with renewable energy sources (RESs) that are associated with uncertainty is investigated on the availability of the smart grid. The combination of the ARIMA model with K-Means scenario reduction method is used to model the uncertainty of load. The feed-in tariff of all generations is considered to calculate the total profit of the system; also, the costs of carbon emissions and opportunity costs from non-production of carbon emission and non-payment of fossil fuel costs due to the use of renewable resources are considered. Also, the energy storage system and the pumped-storage hydropower are considered. In this paper, an improved multi-objective crow search algorithm (IMCSA) is used to find the optimal operation of a smart grid in order to increase the AEI and profit of the system. The proposed method not only can minimize the power losses of the smart grid but also can improve the availability, reliability and total profit of smart grid.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Storage
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Storage
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nadia Anjom Shoa; orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    Masoud Rashidinejad; orcid Alireza Bakhshai;
    Alireza Bakhshai
    ORCID
    Harvested from ORCID Public Data File

    Alireza Bakhshai in OpenAIRE
    +1 Authors

    Abstract This paper presents a new available efficiency index (AEI) and then optimizes it in order to increase the number of hours the load is supplied while decrease the losses as well as expected energy not supplied in a smart grid. The effectiveness of the presence of energy storage system (ESS) along with renewable energy sources (RESs) that are associated with uncertainty is investigated on the availability of the smart grid. The combination of the ARIMA model with K-Means scenario reduction method is used to model the uncertainty of load. The feed-in tariff of all generations is considered to calculate the total profit of the system; also, the costs of carbon emissions and opportunity costs from non-production of carbon emission and non-payment of fossil fuel costs due to the use of renewable resources are considered. Also, the energy storage system and the pumped-storage hydropower are considered. In this paper, an improved multi-objective crow search algorithm (IMCSA) is used to find the optimal operation of a smart grid in order to increase the AEI and profit of the system. The proposed method not only can minimize the power losses of the smart grid but also can improve the availability, reliability and total profit of smart grid.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Storage
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Storage
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Amir Abdollahi;
    Amir Abdollahi
    ORCID
    Harvested from ORCID Public Data File

    Amir Abdollahi in OpenAIRE
    orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Alireza Bakhshai;
    Alireza Bakhshai
    ORCID
    Harvested from ORCID Public Data File

    Alireza Bakhshai in OpenAIRE
    orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    +2 Authors

    Abstract One of the main challenges and essentials of the power system is the flexibility of generation scheduling. The flexibility of a system can be enhanced by using a smart grid comprising demand response, hybrid/diesel generation units and energy storage system. In this paper, an improved flexibility index is defined with the concept of fast reserve supply. The uncertainties of wind/solar power plants and required reserve of thermal units are considered using Latin Hypercube Sampling (LHS). The smart grid supplies a part of load profile of commercial consumers and a part of charge profile of plug-in hybrid electric vehicles (PHEVs) through wind and solar virtual power plants (VPPs), responsive loads, distributed generators (DGs) and the energy storage system. Moreover, the PHEVs considered in this paper provide a system with more flexibility. This paper has solved the unit commitment problem in a single-node system that has no transmission constraints. The mixed integer linear programming (MILP) and the mixed integer non-linear programming (MINLP) methods have been used in order to solve the unit commitment problem and the smart grid scheduling, respectively. The results show that the presented model can optimize the costs of the system and causes the system to become more flexible.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Amir Abdollahi;
    Amir Abdollahi
    ORCID
    Harvested from ORCID Public Data File

    Amir Abdollahi in OpenAIRE
    orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Alireza Bakhshai;
    Alireza Bakhshai
    ORCID
    Harvested from ORCID Public Data File

    Alireza Bakhshai in OpenAIRE
    orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    +2 Authors

    Abstract One of the main challenges and essentials of the power system is the flexibility of generation scheduling. The flexibility of a system can be enhanced by using a smart grid comprising demand response, hybrid/diesel generation units and energy storage system. In this paper, an improved flexibility index is defined with the concept of fast reserve supply. The uncertainties of wind/solar power plants and required reserve of thermal units are considered using Latin Hypercube Sampling (LHS). The smart grid supplies a part of load profile of commercial consumers and a part of charge profile of plug-in hybrid electric vehicles (PHEVs) through wind and solar virtual power plants (VPPs), responsive loads, distributed generators (DGs) and the energy storage system. Moreover, the PHEVs considered in this paper provide a system with more flexibility. This paper has solved the unit commitment problem in a single-node system that has no transmission constraints. The mixed integer linear programming (MILP) and the mixed integer non-linear programming (MINLP) methods have been used in order to solve the unit commitment problem and the smart grid scheduling, respectively. The results show that the presented model can optimize the costs of the system and causes the system to become more flexible.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Arash Rajaei;
    Arash Rajaei
    ORCID
    Harvested from ORCID Public Data File

    Arash Rajaei in OpenAIRE
    orcid bw Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Masoud Rashidinejad in OpenAIRE
    orcid Hossein Farahmand;
    Hossein Farahmand
    ORCID
    Harvested from ORCID Public Data File

    Hossein Farahmand in OpenAIRE

    Holacracy is a social structure for operating an organization in a self-organized, self-managed, and autonomous manner. Smart grids are moving toward local energy supply and self-organization to empower consumer electricity. Prosumers and consumers can actively share the benefit of using local energy sources in the form of emerging energy communities. A holacracy structure can be defined as a decision-making system throughout a holarchy of self-organizing instead of hierarchical management to achieve more democratic forms of organizational governance. In this article, we present a new concept and a novel modeling approach for a self-organizing system based on a holacracy structure for energy management. A new community convenience index based on an energy holacracy structure is presented. The community convenience index reflects the prosumers' preferences within energy communities. The results show the effectiveness of the proposed holacracy structure by increasing community convenience and smart microgrids hosting capacity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2024
    Data sources: VBN
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2024
      Data sources: VBN
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Arash Rajaei;
    Arash Rajaei
    ORCID
    Harvested from ORCID Public Data File

    Arash Rajaei in OpenAIRE
    orcid bw Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Masoud Rashidinejad in OpenAIRE
    orcid Hossein Farahmand;
    Hossein Farahmand
    ORCID
    Harvested from ORCID Public Data File

    Hossein Farahmand in OpenAIRE

    Holacracy is a social structure for operating an organization in a self-organized, self-managed, and autonomous manner. Smart grids are moving toward local energy supply and self-organization to empower consumer electricity. Prosumers and consumers can actively share the benefit of using local energy sources in the form of emerging energy communities. A holacracy structure can be defined as a decision-making system throughout a holarchy of self-organizing instead of hierarchical management to achieve more democratic forms of organizational governance. In this article, we present a new concept and a novel modeling approach for a self-organizing system based on a holacracy structure for energy management. A new community convenience index based on an energy holacracy structure is presented. The community convenience index reflects the prosumers' preferences within energy communities. The results show the effectiveness of the proposed holacracy structure by increasing community convenience and smart microgrids hosting capacity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2024
    Data sources: VBN
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2024
      Data sources: VBN
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    Masoud Rashidinejad; Atefeh Alirezazadeh; orcid Alireza Bakhshai;
    Alireza Bakhshai
    ORCID
    Harvested from ORCID Public Data File

    Alireza Bakhshai in OpenAIRE
    +1 Authors

    Abstract The optimal, resilient and flexible operation of the power system is one of the most important challenges of the power grid. Fast resources as a backup capacity to provide power are one of the ways the power system to be more flexible and resilient. In this paper, a new joint power and reserve scheduling is done considering scheduling based on power instead of scheduling based on energy, the correct management of the thermal units’ ramp, the use of responsive loads includes a collection of commercial customers and plug-in electric vehicles (PEVs) in the secondary (15-minute) and tertiary (30-minute) reserves and discharge management of PEVs. A part of the power demand of these responsive loads is provided as free by renewable resources in times when there are no bad weather conditions. The use of responsive loads, correct management of the ramp of thermal units and a part of the discharge of PEVs can help restore the network quickly. The mixed-integer linear programming (MILP) method has been used to solve the joint power and reserve scheduling problem. The results show that the proposed model can lead to more flexibility and resiliency of the system and reduce the cost of the system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Energy Technologies and Assessments
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Energy Technologies and Assessments
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    Masoud Rashidinejad; Atefeh Alirezazadeh; orcid Alireza Bakhshai;
    Alireza Bakhshai
    ORCID
    Harvested from ORCID Public Data File

    Alireza Bakhshai in OpenAIRE
    +1 Authors

    Abstract The optimal, resilient and flexible operation of the power system is one of the most important challenges of the power grid. Fast resources as a backup capacity to provide power are one of the ways the power system to be more flexible and resilient. In this paper, a new joint power and reserve scheduling is done considering scheduling based on power instead of scheduling based on energy, the correct management of the thermal units’ ramp, the use of responsive loads includes a collection of commercial customers and plug-in electric vehicles (PEVs) in the secondary (15-minute) and tertiary (30-minute) reserves and discharge management of PEVs. A part of the power demand of these responsive loads is provided as free by renewable resources in times when there are no bad weather conditions. The use of responsive loads, correct management of the ramp of thermal units and a part of the discharge of PEVs can help restore the network quickly. The mixed-integer linear programming (MILP) method has been used to solve the joint power and reserve scheduling problem. The results show that the proposed model can lead to more flexibility and resiliency of the system and reduce the cost of the system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Energy Technologies and Assessments
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Energy Technologies and Assessments
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Seyed Amir Hosseini;
    Seyed Amir Hosseini
    ORCID
    Harvested from ORCID Public Data File

    Seyed Amir Hosseini in OpenAIRE
    orcid Saeed Peyghami;
    Saeed Peyghami
    ORCID
    Harvested from ORCID Public Data File

    Saeed Peyghami in OpenAIRE

    The increasing integration of renewable energy sources (RESs) into power systems has introduced new complexities due to the inherent variability and uncertainty of these energy sources. In addition to the uncertainty in RES generation, the demand-side load of power systems is also subject to fluctuations, further complicating system operations. Addressing these challenges requires effective modeling and assessment techniques to quantify and mitigate the risks associated with system uncertainties. This paper evaluates the impact of various uncertainty modeling techniques on power system reliability with wind farm integration. Furthermore, this paper reviews the state of the art of the various uncertainty and risk modeling techniques in power systems. Through a detailed case study, the performance of these techniques in modeling uncertainties of wind speeds is analyzed. Based on the results, the integration of wind turbines improves the system’s overall reliability when there is a reduction in conventional power plants (CPPs)’ generation, which are dispatchable energy sources providing a stable and flexible supply. However, the generation of wind farms is associated with uncertainty. The results show Monte Carlo simulation combined with the K-Means method is consistently a more accurate uncertainty model for wind speeds, closely aligning with real-case scenarios, compared to other methods such as Markov Chain Monte Carlo (MCMC), robust optimization (RO), and information-gap decision theory (IGDT).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2024
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VBN
    Article . 2024
    Data sources: VBN
    addClaim
    Access Routes
    Green
    gold
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2024
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VBN
      Article . 2024
      Data sources: VBN
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    orcid Seyed Amir Hosseini;
    Seyed Amir Hosseini
    ORCID
    Harvested from ORCID Public Data File

    Seyed Amir Hosseini in OpenAIRE
    orcid Saeed Peyghami;
    Saeed Peyghami
    ORCID
    Harvested from ORCID Public Data File

    Saeed Peyghami in OpenAIRE

    The increasing integration of renewable energy sources (RESs) into power systems has introduced new complexities due to the inherent variability and uncertainty of these energy sources. In addition to the uncertainty in RES generation, the demand-side load of power systems is also subject to fluctuations, further complicating system operations. Addressing these challenges requires effective modeling and assessment techniques to quantify and mitigate the risks associated with system uncertainties. This paper evaluates the impact of various uncertainty modeling techniques on power system reliability with wind farm integration. Furthermore, this paper reviews the state of the art of the various uncertainty and risk modeling techniques in power systems. Through a detailed case study, the performance of these techniques in modeling uncertainties of wind speeds is analyzed. Based on the results, the integration of wind turbines improves the system’s overall reliability when there is a reduction in conventional power plants (CPPs)’ generation, which are dispatchable energy sources providing a stable and flexible supply. However, the generation of wind farms is associated with uncertainty. The results show Monte Carlo simulation combined with the K-Means method is consistently a more accurate uncertainty model for wind speeds, closely aligning with real-case scenarios, compared to other methods such as Markov Chain Monte Carlo (MCMC), robust optimization (RO), and information-gap decision theory (IGDT).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2024
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VBN
    Article . 2024
    Data sources: VBN
    addClaim
    Access Routes
    Green
    gold
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2024
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VBN
      Article . 2024
      Data sources: VBN
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    Iman Sanjari; orcid Hamidreza Arasteh;
    Hamidreza Arasteh
    ORCID
    Harvested from ORCID Public Data File

    Hamidreza Arasteh in OpenAIRE
    +1 Authors

    Abstract The possibilistic-probabilistic self-scheduling problem is addressed in this paper to maximize the profit of a producer from several conventional units’ production, a wind turbine production and an Energy Storage System (ESS). Demand Response Program (DRP) is employed to reduce the uncertainty cost of the wind turbine production due to the wind speed uncertainty. Moreover, the unit commitment security constraints as well as the emission constraints are modelled as the restrictions of the proposed problem. This paper proposes a fuzzy-Markov model for modelling the effects of lightning uncertainty on the performance and self-scheduling of a producer in a smart grid in the presence of DRPs, renewable energies and ESSs. The DRPs and ESSs could be considered as the fast response resources and they play an important role in providing electricity demand and increasing the flexibility of the smart grid in the time of the occurrence of high-impact, low-probability events such as lightning. The generation units’ aging and its effect on self-scheduling problem are modelled. The problem is evaluated through different scenarios considering different amounts of risk levels. The risks associated with the uncertainty of the renewable resources and market prices are modelled using Conditional Value at Risk (CVaR). The mixed integer non-linear programming has been used to solve the self-scheduling problem and the problem is implemented in GAMS software and solved by COUENNE solver. The results show the effectiveness of the presented fuzzy technique for modeling the lightning uncertainty and the proposed method for solving the self-scheduling problem.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Electrical Power & Energy Systems
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Electrical Power & Energy Systems
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Masoud Rashidinejad;
    Masoud Rashidinejad
    ORCID
    Harvested from ORCID Public Data File

    Masoud Rashidinejad in OpenAIRE
    orcid Peyman Afzali;
    Peyman Afzali
    ORCID
    Harvested from ORCID Public Data File

    Peyman Afzali in OpenAIRE
    Iman Sanjari; orcid Hamidreza Arasteh;
    Hamidreza Arasteh
    ORCID
    Harvested from ORCID Public Data File

    Hamidreza Arasteh in OpenAIRE
    +1 Authors

    Abstract The possibilistic-probabilistic self-scheduling problem is addressed in this paper to maximize the profit of a producer from several conventional units’ production, a wind turbine production and an Energy Storage System (ESS). Demand Response Program (DRP) is employed to reduce the uncertainty cost of the wind turbine production due to the wind speed uncertainty. Moreover, the unit commitment security constraints as well as the emission constraints are modelled as the restrictions of the proposed problem. This paper proposes a fuzzy-Markov model for modelling the effects of lightning uncertainty on the performance and self-scheduling of a producer in a smart grid in the presence of DRPs, renewable energies and ESSs. The DRPs and ESSs could be considered as the fast response resources and they play an important role in providing electricity demand and increasing the flexibility of the smart grid in the time of the occurrence of high-impact, low-probability events such as lightning. The generation units’ aging and its effect on self-scheduling problem are modelled. The problem is evaluated through different scenarios considering different amounts of risk levels. The risks associated with the uncertainty of the renewable resources and market prices are modelled using Conditional Value at Risk (CVaR). The mixed integer non-linear programming has been used to solve the self-scheduling problem and the problem is implemented in GAMS software and solved by COUENNE solver. The results show the effectiveness of the presented fuzzy technique for modeling the lightning uncertainty and the proposed method for solving the self-scheduling problem.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Electrical Power & Energy Systems
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Electrical Power & Energy Systems
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph