- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Springer Science and Business Media LLC Ao Liu; Rong Liu; Feiya Lei; Jiazheng Wang; Yongwei Luo; Bingqi Hu; Shouzhong Li; Xianyu Yang;Climate change is expected to alter the population dynamics of pioneer tree species and their planned use in sustainable forest management, but we have a limited understanding of how their demographic rates change in response to climate changes during ecological restoration. Based on 12 years of demographic data for a pioneer tree species (Pinus massoniana) censused in three plots that correspond to three stages of ecological restoration in southeastern China. We built integral projection models (IPMs) to assess vital rates (survival, growth, reproduction) and population growth in each plot, then evaluated demographic changes to simulated changes in seasonal mean temperature and precipitation in the current and previous census period. The plot representing the medium restoration stage had the highest population growth rate (λ = 0.983). Mean population survival probability increased with ecological restoration, and reproduction probability was significantly suppressed at the high restoration stage. Survival is always the most important vital rate for λ, and climate affects λ primarily via survival at each restoration stage. The current spring temperature was the most critical climate variable for λ in the low and medium restoration stages, and previous summer temperature was most critical in the high restoration stage. Simulated warming leads to a decrease in the stochastic population growth rate (λs) of P. massoniana in every stage. These findings suggest that during ecological restoration, P. massoniana responds to habitat change via modified demographic performance, thus altering its response to climate change. Despite diverse responses to climate change, the persistence of P. massoniana populations is facing a widespread threat of warming states at each restoration stages.
Journal of Forestry ... arrow_drop_down Journal of Forestry ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefJournal of Forestry ResearchArticle . 2025add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11676-025-01831-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Forestry ... arrow_drop_down Journal of Forestry ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefJournal of Forestry ResearchArticle . 2025add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11676-025-01831-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Springer Science and Business Media LLC Ao Liu; Rong Liu; Feiya Lei; Jiazheng Wang; Yongwei Luo; Bingqi Hu; Shouzhong Li; Xianyu Yang;Climate change is expected to alter the population dynamics of pioneer tree species and their planned use in sustainable forest management, but we have a limited understanding of how their demographic rates change in response to climate changes during ecological restoration. Based on 12 years of demographic data for a pioneer tree species (Pinus massoniana) censused in three plots that correspond to three stages of ecological restoration in southeastern China. We built integral projection models (IPMs) to assess vital rates (survival, growth, reproduction) and population growth in each plot, then evaluated demographic changes to simulated changes in seasonal mean temperature and precipitation in the current and previous census period. The plot representing the medium restoration stage had the highest population growth rate (λ = 0.983). Mean population survival probability increased with ecological restoration, and reproduction probability was significantly suppressed at the high restoration stage. Survival is always the most important vital rate for λ, and climate affects λ primarily via survival at each restoration stage. The current spring temperature was the most critical climate variable for λ in the low and medium restoration stages, and previous summer temperature was most critical in the high restoration stage. Simulated warming leads to a decrease in the stochastic population growth rate (λs) of P. massoniana in every stage. These findings suggest that during ecological restoration, P. massoniana responds to habitat change via modified demographic performance, thus altering its response to climate change. Despite diverse responses to climate change, the persistence of P. massoniana populations is facing a widespread threat of warming states at each restoration stages.
Journal of Forestry ... arrow_drop_down Journal of Forestry ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefJournal of Forestry ResearchArticle . 2025add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11676-025-01831-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Forestry ... arrow_drop_down Journal of Forestry ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefJournal of Forestry ResearchArticle . 2025add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11676-025-01831-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu