- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Data Paper 2020Embargo end date: 09 Jul 2020 Germany, Italy, Denmark, Italy, Italy, Australia, Germany, Germany, Belgium, Australia, Italy, Netherlands, Belgium, Italy, Australia, Italy, Russian Federation, Germany, Czech Republic, Germany, Italy, Australia, Netherlands, Australia, Switzerland, Italy, Australia, Germany, Netherlands, Norway, Germany, Australia, Australia, Italy, Finland, Sweden, Czech Republic, France, Spain, Denmark, Netherlands, Finland, United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmid: 32647314
pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81470Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2xf0f1djData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2020Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsGFZ German Research Centre for GeosciencesArticle . 2020License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 896 citations 896 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81470Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2xf0f1djData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2020Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsGFZ German Research Centre for GeosciencesArticle . 2020License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Netherlands, Netherlands, Netherlands, Brazil, Australia, Netherlands, Netherlands, Spain, United States, Netherlands, New Zealand, United StatesPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Collaborative Research: N..., EC | ECOWORM, ARC | Discovery Projects - Gran... +5 projectsNSF| Collaborative Research: NSFDEB-NERC: Tropical deadwood carbon fluxes: Improving carbon models by incorporating termites and microbes ,EC| ECOWORM ,ARC| Discovery Projects - Grant ID: DP160103765 ,NSF| Coastal SEES Collaborative Research: Salinization of the Coastal Plain through Saltwater Intrusion - Landscapes in Transition along the Leading Edge of Climate Change ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,UKRI| BIODIVERSITY AND LAND-USE IMPACTS ON TROPICAL ECOSYSTEM FUNCTION (BALI) ,NSF| CAREER: Trajectories of ecosystem recovery in coastal wetlands under a changing climate: connecting the dots with student research, citizen science, and classroom data analyses ,NSF| LTER: Luquillo LTER VI: Understanding Ecosystem Change in Northeastern Puerto RicoAmy E. Zanne; Habacuc Flores-Moreno; Jeff R. Powell; William K. Cornwell; James W. Dalling; Amy T. Austin; Aimée T. Classen; Paul Eggleton; Kei-ichi Okada; Catherine L. Parr; E. Carol Adair; Stephen Adu-Bredu; Md Azharul Alam; Carolina Alvarez-Garzón; Deborah Apgaua; Roxana Aragón; Marcelo Ardon; Stefan K. Arndt; Louise A. Ashton; Nicholas A. Barber; Jacques Beauchêne; Matty P. Berg; Jason Beringer; Matthias M. Boer; José Antonio Bonet; Katherine Bunney; Tynan J. Burkhardt; Dulcinéia Carvalho; Dennis Castillo-Figueroa; Lucas A. Cernusak; Alexander W. Cheesman; Tainá M. Cirne-Silva; Jamie R. Cleverly; Johannes H. C. Cornelissen; Timothy J. Curran; André M. D’Angioli; Caroline Dallstream; Nico Eisenhauer; Fidele Evouna Ondo; Alex Fajardo; Romina D. Fernandez; Astrid Ferrer; Marco A. L. Fontes; Mark L. Galatowitsch; Grizelle González; Felix Gottschall; Peter R. Grace; Elena Granda; Hannah M. Griffiths; Mariana Guerra Lara; Motohiro Hasegawa; Mariet M. Hefting; Nina Hinko-Najera; Lindsay B. Hutley; Jennifer Jones; Anja Kahl; Mirko Karan; Joost A. Keuskamp; Tim Lardner; Michael Liddell; Craig Macfarlane; Cate Macinnis-Ng; Ravi F. Mariano; M. Soledad Méndez; Wayne S. Meyer; Akira S. Mori; Aloysio S. Moura; Matthew Northwood; Romà Ogaya; Rafael S. Oliveira; Alberto Orgiazzi; Juliana Pardo; Guille Peguero; Josep Penuelas; Luis I. Perez; Juan M. Posada; Cecilia M. Prada; Tomáš Přívětivý; Suzanne M. Prober; Jonathan Prunier; Gabriel W. Quansah; Víctor Resco de Dios; Ronny Richter; Mark P. Robertson; Lucas F. Rocha; Megan A. Rúa; Carolina Sarmiento; Richard P. Silberstein; Mateus C. Silva; Flávia Freire Siqueira; Matthew Glenn Stillwagon; Jacqui Stol; Melanie K. Taylor; François P. Teste; David Y. P. Tng; David Tucker; Manfred Türke; Michael D. Ulyshen; Oscar J. Valverde-Barrantes; Eduardo van den Berg; Richard S. P. van Logtestijn; G. F. (Ciska) Veen; Jason G. Vogel; Timothy J. Wardlaw; Georg Wiehl; Christian Wirth; Michaela J. Woods; Paul-Camilo Zalamea;pmid: 36137034
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)—even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth’s surface.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421793Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022Data sources: Diposit Digital de Documents de la UABJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Repositório Institucional da UFLAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Wright State University: CORE Scholar (Campus Online Repository)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo3856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421793Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022Data sources: Diposit Digital de Documents de la UABJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Repositório Institucional da UFLAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Wright State University: CORE Scholar (Campus Online Repository)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo3856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Amy E. Zanne; Habacuc Flores‐Moreno; Jeff R. Powell; William K. Cornwell; James W. Dalling; Amy T. Austin; Aimée T. Classen; Paul Eggleton; Kunihiko Okada; Catherine Parr; Elizabeth C. Adair; Stephen Adu‐Bredu; Md Azharul Alam; Carolina Alvarez-Garzón; Deborah M. G. Apgaua; Roxana Aragón; Marcelo Ardón; Stefan K. Arndt; Louise A. Ashton; Nicholas A. Barber; Jacques Beauchêne; Matty P. Berg; Jason Beringer; Matthias M. Boer; J. A. Bonet; Katherine Bunney; Tynan Burkhardt; Dulcinéia de Carvalho; Dennis Castillo-Figueroa; Lucas A. Cernusak; Alexander W. Cheesman; Taina Cirne-Silva; Jamie Cleverly; Johannes H. C. Cornelissen; Timothy J. Curran; André D'Angioli; Caroline Dallstream; Nico Eisenhauer; Fidèle Evouna Ondo; Alex Fajardo; Romina Fernández; Astrid Ferrer; Marco Aurélio Leite Fontes; Mark L. Galatowitsch; Grizelle González; Felix Gottschall; Peter Grace; Elena Granda; Hannah Griffiths; Mariana Guerra Lara; Motohiro Hasegawa; Mariet M. Hefting; Nina Hinko‐Najera; Lindsay B. Hutley; Jennifer Jones; Anja Kahl; Mirko Karan; Joost A. Keuskamp; Tim Lardner; Michael J. Liddell; Craig Macfarlane; Cate Macinnis‐Ng; Ravi Fernandes Mariano; Wayne S. Meyer; Akira Mori; Aloysio Souza de Moura; Matthew Northwood; Romà Ogaya; Rafael S. Oliveira; Alberto Orgiazzi; Juliana Pardo; Guille Peguero; Josep Peñuelas; Luis I. Pérez; Juan M. Posada; Cecilia Prada; Tomáš Přívětivý; Suzanne M. Prober; Jonathan Prunier; Gabriel W. Quansah; Víctor Resco de Dios; Ronny Richter; Mark P. Robertson; Lucas Fernandes Rocha; Megan A. Rúa; Carolina Sarmiento; Richard Silberstein; Mateus Silva; Flávia Freire de Siqueira; Matthew Glenn Stillwagon; Jacqui Stol; Melanie K. Taylor; François P. Teste; David Y. P. Tng; David Tucker; Manfred Türke; Michael D. Ulyshen; Oscar J. Valverde‐Barrantes; Eduardo van den Berg; Richard S. P. van Logtestijn;Résumé Les animaux, tels que les termites, ont été largement négligés en tant que moteurs à l'échelle mondiale des cycles biogéochimiques 1,2 , malgré les résultats spécifiques au site 3,4 . Le renouvellement du bois mort, une composante importante du cycle du carbone, est entraîné par de multiples agents de désintégration. Des études se sont concentrées sur les systèmes tempérés 5,6 , où les microbes dominent la désintégration 7 . La désintégration microbienne est sensible à la température, doublant généralement pour une augmentation de 10 °C (désintégration efficace Q 10 = ~2) 8–10 . Les termites sont des désintégrateurs importants dans les systèmes tropicaux 3,11–13 et diffèrent des microbes par leur dynamique de population, leur dispersion et leur découverte de substrat 14–16 , ce qui signifie que leurs sensibilités climatiques diffèrent également. En utilisant un réseau de 133 sites couvrant 6 continents, nous rapportons la première quantification mondiale sur le terrain des sensibilités à la température et aux précipitations pour les termites et les microbes, fournissant de nouvelles compréhensions de leur réponse aux changements climatiques. La sensibilité à la température de la désintégration microbienne se situait dans les estimations précédentes. La découverte et la consommation de termites étaient toutes deux beaucoup plus sensibles à la température (désintégration effective Q 10 = 6,53), ce qui entraînait des différences frappantes dans le taux de renouvellement du bois mort dans les zones avec et sans termites. Les impacts de termites ont été les plus importants dans les forêts tropicales saisonnières, les savanes et les déserts subtropicaux. Avec la tropicalisation 17 (c.-à-d., le réchauffement se déplace vers un climat tropical), la contribution des termites à la décomposition mondiale du bois augmentera à mesure qu'une plus grande partie de la surface de la terre deviendra accessible aux termites. Resumen Los animales, como las termitas, se han pasado por alto en gran medida como impulsores a escala mundial de los ciclos biogeoquímicos 1,2 , a pesar de los hallazgos específicos del sitio 3,4 . La rotación de la madera muerta, un componente importante del ciclo del carbono, es impulsada por múltiples agentes de descomposición. Los estudios se han centrado en los sistemas templados 5,6 , donde los microbios dominan la descomposición 7 . La descomposición microbiana es sensible a la temperatura, por lo general se duplica por cada aumento de 10 ° C (Q efectiva de descomposición 10 = ~2) 8–10 . Las termitas son desintegradores importantes en los sistemas tropicales 3,11–13 y difieren de los microbios en su dinámica de población, dispersión y descubrimiento de sustratos 14–16 , lo que significa que sus sensibilidades climáticas también difieren. Utilizando una red de 133 sitios que abarcan 6 continentes, informamos la primera cuantificación global basada en el campo de las sensibilidades a la temperatura y la precipitación para termitas y microbios, proporcionando una comprensión novedosa de su respuesta a los climas cambiantes. La sensibilidad a la temperatura de la descomposición microbiana estaba dentro de las estimaciones anteriores. El descubrimiento y el consumo de termitas fueron mucho más sensibles a la temperatura (descomposición efectiva Q 10 = 6.53), lo que llevó a diferencias sorprendentes en la rotación de madera muerta en áreas con y sin termitas. Los impactos de termitas fueron mayores en los bosques tropicales estacionales, las sabanas y los desiertos subtropicales. Con la tropicalización 17 (es decir, el calentamiento cambia a un clima tropical), la contribución de las termitas a la descomposición global de la madera aumentará a medida que más de la superficie de la tierra se vuelva accesible para las termitas. Abstract Animals, such as termites, have largely been overlooked as global-scale drivers of biogeochemical cycles 1,2 , despite site-specific findings 3,4 . Deadwood turnover, an important component of the carbon cycle, is driven by multiple decay agents. Studies have focused on temperate systems 5,6 , where microbes dominate decay 7 . Microbial decay is sensitive to temperature, typically doubling per 10°C increase (decay effective Q 10 = ~2) 8–10 . Termites are important decayers in tropical systems 3,11–13 and differ from microbes in their population dynamics, dispersal, and substrate discovery 14–16 , meaning their climate sensitivities also differ. Using a network of 133 sites spanning 6 continents, we report the first global field-based quantification of temperature and precipitation sensitivities for termites and microbes, providing novel understandings of their response to changing climates. Temperature sensitivity of microbial decay was within previous estimates. Termite discovery and consumption were both much more sensitive to temperature (decay effective Q 10 = 6.53), leading to striking differences in deadwood turnover in areas with and without termites. Termite impacts were greatest in tropical seasonal forests and savannas and subtropical deserts. With tropicalization 17 (i.e., warming shifts to a tropical climate), the termite contribution to global wood decay will increase as more of the earth's surface becomes accessible to termites. تم التغاضي إلى حد كبير عن الحيوانات، مثل النمل الأبيض، كمحركات عالمية النطاق للدورات الكيميائية الجيولوجية الحيوية 1،2 ، على الرغم من النتائج الخاصة بالموقع 3،4 . دوران الخشب الميت، وهو عنصر مهم في دورة الكربون، مدفوع بعوامل اضمحلال متعددة. وقد ركزت الدراسات على النظم المعتدلة 5،6 ، حيث تهيمن الميكروبات على الاضمحلال 7 . يكون الاضمحلال الميكروبي حساسًا لدرجة الحرارة، وعادة ما يتضاعف لكل زيادة 10 درجات مئوية (الاضمحلال الفعال Q 10 =~2) 8–10 . النمل الأبيض من المتحللين المهمين في الأنظمة الاستوائية 3،11-13 ويختلف عن الميكروبات في ديناميكياتها السكانية وانتشارها واكتشاف الركائز 14–16 ، مما يعني أن حساسياتها المناخية تختلف أيضًا. باستخدام شبكة من 133 موقعًا تمتد عبر 6 قارات، نبلغ عن أول قياس كمي ميداني عالمي لدرجات الحرارة وحساسيات هطول الأمطار للنمل الأبيض والميكروبات، مما يوفر فهمًا جديدًا لاستجابتها للمناخ المتغير. كانت حساسية درجة حرارة الاضمحلال الميكروبي ضمن التقديرات السابقة. كان اكتشاف النمل الأبيض واستهلاكه أكثر حساسية لدرجة الحرارة (التحلل الفعال Q 10 = 6.53)، مما أدى إلى اختلافات صارخة في دوران الأخشاب الميتة في المناطق التي تحتوي على النمل الأبيض أو لا تحتوي عليه. كانت آثار النمل الأبيض أكبر في الغابات الموسمية الاستوائية والسافانا والصحاري شبه الاستوائية. مع الاستوائية 17 (أي، يتحول الاحترار إلى مناخ استوائي)، ستزداد مساهمة النمل الأبيض في تحلل الخشب العالمي مع وصول المزيد من سطح الأرض إلى النمل الأبيض.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/pxvgc-cd909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/pxvgc-cd909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Alison C. Bennett; Jürgen Knauer; Lauren T. Bennett; Vanessa Haverd; Stefan K. Arndt;AbstractClimate change will impact gross primary productivity (GPP), net primary productivity (NPP), and carbon storage in wooded ecosystems. The extent of change will be influenced by thermal acclimation of photosynthesis—the ability of plants to adjust net photosynthetic rates in response to growth temperatures—yet regional differences in acclimation effects among wooded ecosystems is currently unknown. We examined the effects of changing climate on 17 Australian wooded ecosystems with and without the effects of thermal acclimation of C3 photosynthesis. Ecosystems were drawn from five ecoregions (tropical savanna, tropical forest, Mediterranean woodlands, temperate woodlands, and temperate forests) that span Australia's climatic range. We used the CABLE‐POP land surface model adapted with thermal acclimation functions and forced with HadGEM2‐ES climate projections from RCP8.5. For each site and ecoregion we examined (a) effects of climate change on GPP, NPP, and live tree carbon storage; and (b) impacts of thermal acclimation of photosynthesis on simulated changes. Between the end of the historical (1976–2005) and projected (2070–2099) periods simulated annual carbon uptake increased in the majority of ecosystems by 26.1%–63.3% for GPP and 15%–61.5% for NPP. Thermal acclimation of photosynthesis further increased GPP and NPP in tropical savannas by 27.2% and 22.4% and by 11% and 10.1% in tropical forests with positive effects concentrated in the wet season (tropical savannas) and the warmer months (tropical forests). We predicted minimal effects of thermal acclimation of photosynthesis on GPP, NPP, and carbon storage in Mediterranean woodlands, temperate woodlands, and temperate forests. Overall, positive effects were strongly enhanced by increasing CO2 concentrations under RCP8.5. We conclude that the direct effects of climate change will enhance carbon uptake and storage in Australian wooded ecosystems (likely due to CO2 enrichment) and that benefits of thermal acclimation of photosynthesis will be restricted to tropical ecoregions.
Global Change Biolog... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Malaysia, Germany, Malaysia, Australia, GermanyPublisher:Wiley Funded by:ARC | Fire Scar Impacts on Surf..., ARC | Discovery Projects - Gran..., ARC | Integrative assessment of... +4 projectsARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Integrative assessment of disturbance and land-use change on total greenhouse gas balance and nutrient cycling in savanna ecosystems ,ARC| Impacts of deforestation and afforestation on greenhouse gas emissions, and carbon and water resources in the Daly River catchment, north Australia ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to region ,ARC| Complexity in climate impact assessment: a methodology to address extremes ,ARC| eScience and Climate: Using Grid technology to build capacity in studies of Australian climate variabilityDavid Abramson; Lucas A. Cernusak; Caitlin E. Moore; Stefan K. Arndt; Samantha Grover; Samantha Grover; Derek Eamus; Michael R. Raupach; Lindsay B. Hutley; Stephen J. Livesley; Nigel J. Tapper; Jorg M. Hacker; Andrew Edwards; Simon Scheiter; Peter R. Briggs; Stefan W. Maier; Klaus Goergen; Vanessa Haverd; Petteri Uotila; Mila Bristow; Josep G. Canadell; Jason Beringer; Jason Beringer; Bradleys J. Evans; Jeremy Russell-Smith; Benedikt J. Fest; Amanda H. Lynch; Amanda H. Lynch; Kasturi Devi Kanniah; Kasturi Devi Kanniah;AbstractSavanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2015Full-Text: http://dx.doi.org/10.1111/gcb.12686Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2015Full-Text: http://dx.doi.org/10.1111/gcb.12686Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Stefan K. Arndt; Alan J. M. Baker; David Gregory; Hoi-Fei Mok; Ramaprasad Majumder; W. Scott Laidlaw;pmid: 23819263
Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2012.723063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2012.723063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Australia, Finland, DenmarkPublisher:American Geophysical Union (AGU) Funded by:ARC | Discovery Projects - Gran..., ARC | MEGA - Mobile Ecosystem G..., ARC | Methane uptake of forest ... +2 projectsARC| Discovery Projects - Grant ID: DP130101566 ,ARC| MEGA - Mobile Ecosystem Gas-exchange Analyser for Australian landscapes ,ARC| Methane uptake of forest soils ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to regionMallick, Kaniska; Toivonen, Erika; Trebs, Ivonne; Boegh, Eva; Cleverly, James; Eamus, Derek; Koivusalo, Harri; Drewry, Darren; Arndt, Stefan K.; Griebel, Anne; Beringer, Jason; Garcia; Monica;doi: 10.1029/2017wr021357
handle: 10138/298954
AbstractThermal infrared sensing of evapotranspiration (E) through surface energy balance (SEB) models is challenging due to uncertainties in determining the aerodynamic conductance (gA) and due to inequalities between radiometric (TR) and aerodynamic temperatures (T0). We evaluated a novel analytical model, the Surface Temperature Initiated Closure (STIC1.2), that physically integrates TR observations into a combined Penman‐Monteith Shuttleworth‐Wallace (PM‐SW) framework for directly estimating E, and overcoming the uncertainties associated with T0 and gA determination. An evaluation of STIC1.2 against high temporal frequency SEB flux measurements across an aridity gradient in Australia revealed a systematic error of 10–52% in E from mesic to arid ecosystem, and low systematic error in sensible heat fluxes (H) (12–25%) in all ecosystems. Uncertainty in TR versus moisture availability relationship, stationarity assumption in surface emissivity, and SEB closure corrections in E were predominantly responsible for systematic E errors in arid and semi‐arid ecosystems. A discrete correlation (r) of the model errors with observed soil moisture variance (r = 0.33–0.43), evaporative index (r = 0.77–0.90), and climatological dryness (r = 0.60–0.77) explained a strong association between ecohydrological extremes and TR in determining the error structure of STIC1.2 predicted fluxes. Being independent of any leaf‐scale biophysical parameterization, the model might be an important value addition in working group (WG2) of the Australian Energy and Water Exchange (OzEWEX) research initiative which focuses on observations to evaluate and compare biophysical models of energy and water cycle components.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1029/2017WR021357Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017wr021357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1029/2017WR021357Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017wr021357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Springer Science and Business Media LLC Funded by:ARC | Integrative assessment of...ARC| Integrative assessment of disturbance and land-use change on total greenhouse gas balance and nutrient cycling in savanna ecosystemsStephen J. Livesley; Lindsay B. Hutley; Tracy Z. Dawes; Stefan K. Arndt; Hizbullah Jamali;pmid: 21562867
Termites are a highly uncertain component in the global source budgets of CH(4) and CO(2). Large seasonal variations in termite mound fluxes of CH(4) and CO(2) have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH(4) and CO(2) fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas. Fluxes of CH(4) and CO(2) of termite mounds were 3.5-fold greater in the wet season as compared to the dry season and were a direct function of termite biomass. Termite biomass in mound samples was tenfold greater in the wet season compared to the dry season. When expressed per unit termite biomass, termite fluxes were only 1.2 (CH(4)) and 1.4 (CO(2))-fold greater in the wet season as compared to the dry season and could not explain the large seasonal variations in mound fluxes of CH(4) and CO(2). Seasonal variation in both gas diffusivity through mound walls and CH(4) oxidation by mound material was negligible. These results highlight for the first time that seasonal termite population dynamics are the main driver for the observed seasonal differences in mound fluxes of CH(4) and CO(2). These findings highlight the need to combine measurements of gas fluxes from termite mounds with detailed studies of termite population dynamics to reduce the uncertainty in quantifying seasonal variations in termite mound fluxes of CH(4) and CO(2).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-011-1991-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-011-1991-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Andrew Merchant; Stefan K. Arndt; Timothy M. Bleby; Stephen J. Livesley; Pauline F. Grierson;pmid: 18315535
ABSTRACTThis study investigated the role of quercitol in osmotic adjustment in field‐grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi‐arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO2 assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought‐stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically ‘plastic’ in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2008.01803.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2008.01803.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Stefan K. Arndt; Stephen E. Swearer; Benedikt J. Fest; Benedikt J. Fest;pmid: 34774962
Blue carbon ecosystems (BCEs), such as mangroves, tidal marshes, and seagrasses, are attracting interest for their potential to mitigate climate change arising from their high rates of carbon accumulation and the significant carbon stocks in their sediments. However, current sediment carbon sampling methods present a mixture of approaches adopted from paleoenvironmental methods focused on historical reconstruction of carbon accumulation, and from soil science methods developed to provide highly accurate and spatially representative carbon stock measurements. Currently, no international standard method for sediment carbon stock analysis exists. Consequently, current estimates of sediment carbon stock values for BCEs may have large uncertainties due to variable methodology. We reviewed and analysed the methods used 217 studies included in two recent global syntheses of carbon stocks in mangrove forest ecosystems to illustrate a lack of consistency in sediment sampling. We then outline how the choice of study design and field sampling methods can introduce inaccuracies and uncertainties in sediment carbon stock analysis. We conclude with examples of how each of these challenges can be resolved and how greater carbon stock quantification accuracy and higher spatial integration can be achieved for blue carbon ecosystems in the future.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Data Paper 2020Embargo end date: 09 Jul 2020 Germany, Italy, Denmark, Italy, Italy, Australia, Germany, Germany, Belgium, Australia, Italy, Netherlands, Belgium, Italy, Australia, Italy, Russian Federation, Germany, Czech Republic, Germany, Italy, Australia, Netherlands, Australia, Switzerland, Italy, Australia, Germany, Netherlands, Norway, Germany, Australia, Australia, Italy, Finland, Sweden, Czech Republic, France, Spain, Denmark, Netherlands, Finland, United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmid: 32647314
pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81470Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2xf0f1djData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2020Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsGFZ German Research Centre for GeosciencesArticle . 2020License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 896 citations 896 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81470Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2xf0f1djData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2020Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsGFZ German Research Centre for GeosciencesArticle . 2020License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Netherlands, Netherlands, Netherlands, Brazil, Australia, Netherlands, Netherlands, Spain, United States, Netherlands, New Zealand, United StatesPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Collaborative Research: N..., EC | ECOWORM, ARC | Discovery Projects - Gran... +5 projectsNSF| Collaborative Research: NSFDEB-NERC: Tropical deadwood carbon fluxes: Improving carbon models by incorporating termites and microbes ,EC| ECOWORM ,ARC| Discovery Projects - Grant ID: DP160103765 ,NSF| Coastal SEES Collaborative Research: Salinization of the Coastal Plain through Saltwater Intrusion - Landscapes in Transition along the Leading Edge of Climate Change ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,UKRI| BIODIVERSITY AND LAND-USE IMPACTS ON TROPICAL ECOSYSTEM FUNCTION (BALI) ,NSF| CAREER: Trajectories of ecosystem recovery in coastal wetlands under a changing climate: connecting the dots with student research, citizen science, and classroom data analyses ,NSF| LTER: Luquillo LTER VI: Understanding Ecosystem Change in Northeastern Puerto RicoAmy E. Zanne; Habacuc Flores-Moreno; Jeff R. Powell; William K. Cornwell; James W. Dalling; Amy T. Austin; Aimée T. Classen; Paul Eggleton; Kei-ichi Okada; Catherine L. Parr; E. Carol Adair; Stephen Adu-Bredu; Md Azharul Alam; Carolina Alvarez-Garzón; Deborah Apgaua; Roxana Aragón; Marcelo Ardon; Stefan K. Arndt; Louise A. Ashton; Nicholas A. Barber; Jacques Beauchêne; Matty P. Berg; Jason Beringer; Matthias M. Boer; José Antonio Bonet; Katherine Bunney; Tynan J. Burkhardt; Dulcinéia Carvalho; Dennis Castillo-Figueroa; Lucas A. Cernusak; Alexander W. Cheesman; Tainá M. Cirne-Silva; Jamie R. Cleverly; Johannes H. C. Cornelissen; Timothy J. Curran; André M. D’Angioli; Caroline Dallstream; Nico Eisenhauer; Fidele Evouna Ondo; Alex Fajardo; Romina D. Fernandez; Astrid Ferrer; Marco A. L. Fontes; Mark L. Galatowitsch; Grizelle González; Felix Gottschall; Peter R. Grace; Elena Granda; Hannah M. Griffiths; Mariana Guerra Lara; Motohiro Hasegawa; Mariet M. Hefting; Nina Hinko-Najera; Lindsay B. Hutley; Jennifer Jones; Anja Kahl; Mirko Karan; Joost A. Keuskamp; Tim Lardner; Michael Liddell; Craig Macfarlane; Cate Macinnis-Ng; Ravi F. Mariano; M. Soledad Méndez; Wayne S. Meyer; Akira S. Mori; Aloysio S. Moura; Matthew Northwood; Romà Ogaya; Rafael S. Oliveira; Alberto Orgiazzi; Juliana Pardo; Guille Peguero; Josep Penuelas; Luis I. Perez; Juan M. Posada; Cecilia M. Prada; Tomáš Přívětivý; Suzanne M. Prober; Jonathan Prunier; Gabriel W. Quansah; Víctor Resco de Dios; Ronny Richter; Mark P. Robertson; Lucas F. Rocha; Megan A. Rúa; Carolina Sarmiento; Richard P. Silberstein; Mateus C. Silva; Flávia Freire Siqueira; Matthew Glenn Stillwagon; Jacqui Stol; Melanie K. Taylor; François P. Teste; David Y. P. Tng; David Tucker; Manfred Türke; Michael D. Ulyshen; Oscar J. Valverde-Barrantes; Eduardo van den Berg; Richard S. P. van Logtestijn; G. F. (Ciska) Veen; Jason G. Vogel; Timothy J. Wardlaw; Georg Wiehl; Christian Wirth; Michaela J. Woods; Paul-Camilo Zalamea;pmid: 36137034
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)—even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth’s surface.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421793Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022Data sources: Diposit Digital de Documents de la UABJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Repositório Institucional da UFLAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Wright State University: CORE Scholar (Campus Online Repository)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo3856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421793Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022Data sources: Diposit Digital de Documents de la UABJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Repositório Institucional da UFLAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Wright State University: CORE Scholar (Campus Online Repository)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo3856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Amy E. Zanne; Habacuc Flores‐Moreno; Jeff R. Powell; William K. Cornwell; James W. Dalling; Amy T. Austin; Aimée T. Classen; Paul Eggleton; Kunihiko Okada; Catherine Parr; Elizabeth C. Adair; Stephen Adu‐Bredu; Md Azharul Alam; Carolina Alvarez-Garzón; Deborah M. G. Apgaua; Roxana Aragón; Marcelo Ardón; Stefan K. Arndt; Louise A. Ashton; Nicholas A. Barber; Jacques Beauchêne; Matty P. Berg; Jason Beringer; Matthias M. Boer; J. A. Bonet; Katherine Bunney; Tynan Burkhardt; Dulcinéia de Carvalho; Dennis Castillo-Figueroa; Lucas A. Cernusak; Alexander W. Cheesman; Taina Cirne-Silva; Jamie Cleverly; Johannes H. C. Cornelissen; Timothy J. Curran; André D'Angioli; Caroline Dallstream; Nico Eisenhauer; Fidèle Evouna Ondo; Alex Fajardo; Romina Fernández; Astrid Ferrer; Marco Aurélio Leite Fontes; Mark L. Galatowitsch; Grizelle González; Felix Gottschall; Peter Grace; Elena Granda; Hannah Griffiths; Mariana Guerra Lara; Motohiro Hasegawa; Mariet M. Hefting; Nina Hinko‐Najera; Lindsay B. Hutley; Jennifer Jones; Anja Kahl; Mirko Karan; Joost A. Keuskamp; Tim Lardner; Michael J. Liddell; Craig Macfarlane; Cate Macinnis‐Ng; Ravi Fernandes Mariano; Wayne S. Meyer; Akira Mori; Aloysio Souza de Moura; Matthew Northwood; Romà Ogaya; Rafael S. Oliveira; Alberto Orgiazzi; Juliana Pardo; Guille Peguero; Josep Peñuelas; Luis I. Pérez; Juan M. Posada; Cecilia Prada; Tomáš Přívětivý; Suzanne M. Prober; Jonathan Prunier; Gabriel W. Quansah; Víctor Resco de Dios; Ronny Richter; Mark P. Robertson; Lucas Fernandes Rocha; Megan A. Rúa; Carolina Sarmiento; Richard Silberstein; Mateus Silva; Flávia Freire de Siqueira; Matthew Glenn Stillwagon; Jacqui Stol; Melanie K. Taylor; François P. Teste; David Y. P. Tng; David Tucker; Manfred Türke; Michael D. Ulyshen; Oscar J. Valverde‐Barrantes; Eduardo van den Berg; Richard S. P. van Logtestijn;Résumé Les animaux, tels que les termites, ont été largement négligés en tant que moteurs à l'échelle mondiale des cycles biogéochimiques 1,2 , malgré les résultats spécifiques au site 3,4 . Le renouvellement du bois mort, une composante importante du cycle du carbone, est entraîné par de multiples agents de désintégration. Des études se sont concentrées sur les systèmes tempérés 5,6 , où les microbes dominent la désintégration 7 . La désintégration microbienne est sensible à la température, doublant généralement pour une augmentation de 10 °C (désintégration efficace Q 10 = ~2) 8–10 . Les termites sont des désintégrateurs importants dans les systèmes tropicaux 3,11–13 et diffèrent des microbes par leur dynamique de population, leur dispersion et leur découverte de substrat 14–16 , ce qui signifie que leurs sensibilités climatiques diffèrent également. En utilisant un réseau de 133 sites couvrant 6 continents, nous rapportons la première quantification mondiale sur le terrain des sensibilités à la température et aux précipitations pour les termites et les microbes, fournissant de nouvelles compréhensions de leur réponse aux changements climatiques. La sensibilité à la température de la désintégration microbienne se situait dans les estimations précédentes. La découverte et la consommation de termites étaient toutes deux beaucoup plus sensibles à la température (désintégration effective Q 10 = 6,53), ce qui entraînait des différences frappantes dans le taux de renouvellement du bois mort dans les zones avec et sans termites. Les impacts de termites ont été les plus importants dans les forêts tropicales saisonnières, les savanes et les déserts subtropicaux. Avec la tropicalisation 17 (c.-à-d., le réchauffement se déplace vers un climat tropical), la contribution des termites à la décomposition mondiale du bois augmentera à mesure qu'une plus grande partie de la surface de la terre deviendra accessible aux termites. Resumen Los animales, como las termitas, se han pasado por alto en gran medida como impulsores a escala mundial de los ciclos biogeoquímicos 1,2 , a pesar de los hallazgos específicos del sitio 3,4 . La rotación de la madera muerta, un componente importante del ciclo del carbono, es impulsada por múltiples agentes de descomposición. Los estudios se han centrado en los sistemas templados 5,6 , donde los microbios dominan la descomposición 7 . La descomposición microbiana es sensible a la temperatura, por lo general se duplica por cada aumento de 10 ° C (Q efectiva de descomposición 10 = ~2) 8–10 . Las termitas son desintegradores importantes en los sistemas tropicales 3,11–13 y difieren de los microbios en su dinámica de población, dispersión y descubrimiento de sustratos 14–16 , lo que significa que sus sensibilidades climáticas también difieren. Utilizando una red de 133 sitios que abarcan 6 continentes, informamos la primera cuantificación global basada en el campo de las sensibilidades a la temperatura y la precipitación para termitas y microbios, proporcionando una comprensión novedosa de su respuesta a los climas cambiantes. La sensibilidad a la temperatura de la descomposición microbiana estaba dentro de las estimaciones anteriores. El descubrimiento y el consumo de termitas fueron mucho más sensibles a la temperatura (descomposición efectiva Q 10 = 6.53), lo que llevó a diferencias sorprendentes en la rotación de madera muerta en áreas con y sin termitas. Los impactos de termitas fueron mayores en los bosques tropicales estacionales, las sabanas y los desiertos subtropicales. Con la tropicalización 17 (es decir, el calentamiento cambia a un clima tropical), la contribución de las termitas a la descomposición global de la madera aumentará a medida que más de la superficie de la tierra se vuelva accesible para las termitas. Abstract Animals, such as termites, have largely been overlooked as global-scale drivers of biogeochemical cycles 1,2 , despite site-specific findings 3,4 . Deadwood turnover, an important component of the carbon cycle, is driven by multiple decay agents. Studies have focused on temperate systems 5,6 , where microbes dominate decay 7 . Microbial decay is sensitive to temperature, typically doubling per 10°C increase (decay effective Q 10 = ~2) 8–10 . Termites are important decayers in tropical systems 3,11–13 and differ from microbes in their population dynamics, dispersal, and substrate discovery 14–16 , meaning their climate sensitivities also differ. Using a network of 133 sites spanning 6 continents, we report the first global field-based quantification of temperature and precipitation sensitivities for termites and microbes, providing novel understandings of their response to changing climates. Temperature sensitivity of microbial decay was within previous estimates. Termite discovery and consumption were both much more sensitive to temperature (decay effective Q 10 = 6.53), leading to striking differences in deadwood turnover in areas with and without termites. Termite impacts were greatest in tropical seasonal forests and savannas and subtropical deserts. With tropicalization 17 (i.e., warming shifts to a tropical climate), the termite contribution to global wood decay will increase as more of the earth's surface becomes accessible to termites. تم التغاضي إلى حد كبير عن الحيوانات، مثل النمل الأبيض، كمحركات عالمية النطاق للدورات الكيميائية الجيولوجية الحيوية 1،2 ، على الرغم من النتائج الخاصة بالموقع 3،4 . دوران الخشب الميت، وهو عنصر مهم في دورة الكربون، مدفوع بعوامل اضمحلال متعددة. وقد ركزت الدراسات على النظم المعتدلة 5،6 ، حيث تهيمن الميكروبات على الاضمحلال 7 . يكون الاضمحلال الميكروبي حساسًا لدرجة الحرارة، وعادة ما يتضاعف لكل زيادة 10 درجات مئوية (الاضمحلال الفعال Q 10 =~2) 8–10 . النمل الأبيض من المتحللين المهمين في الأنظمة الاستوائية 3،11-13 ويختلف عن الميكروبات في ديناميكياتها السكانية وانتشارها واكتشاف الركائز 14–16 ، مما يعني أن حساسياتها المناخية تختلف أيضًا. باستخدام شبكة من 133 موقعًا تمتد عبر 6 قارات، نبلغ عن أول قياس كمي ميداني عالمي لدرجات الحرارة وحساسيات هطول الأمطار للنمل الأبيض والميكروبات، مما يوفر فهمًا جديدًا لاستجابتها للمناخ المتغير. كانت حساسية درجة حرارة الاضمحلال الميكروبي ضمن التقديرات السابقة. كان اكتشاف النمل الأبيض واستهلاكه أكثر حساسية لدرجة الحرارة (التحلل الفعال Q 10 = 6.53)، مما أدى إلى اختلافات صارخة في دوران الأخشاب الميتة في المناطق التي تحتوي على النمل الأبيض أو لا تحتوي عليه. كانت آثار النمل الأبيض أكبر في الغابات الموسمية الاستوائية والسافانا والصحاري شبه الاستوائية. مع الاستوائية 17 (أي، يتحول الاحترار إلى مناخ استوائي)، ستزداد مساهمة النمل الأبيض في تحلل الخشب العالمي مع وصول المزيد من سطح الأرض إلى النمل الأبيض.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/pxvgc-cd909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/pxvgc-cd909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Alison C. Bennett; Jürgen Knauer; Lauren T. Bennett; Vanessa Haverd; Stefan K. Arndt;AbstractClimate change will impact gross primary productivity (GPP), net primary productivity (NPP), and carbon storage in wooded ecosystems. The extent of change will be influenced by thermal acclimation of photosynthesis—the ability of plants to adjust net photosynthetic rates in response to growth temperatures—yet regional differences in acclimation effects among wooded ecosystems is currently unknown. We examined the effects of changing climate on 17 Australian wooded ecosystems with and without the effects of thermal acclimation of C3 photosynthesis. Ecosystems were drawn from five ecoregions (tropical savanna, tropical forest, Mediterranean woodlands, temperate woodlands, and temperate forests) that span Australia's climatic range. We used the CABLE‐POP land surface model adapted with thermal acclimation functions and forced with HadGEM2‐ES climate projections from RCP8.5. For each site and ecoregion we examined (a) effects of climate change on GPP, NPP, and live tree carbon storage; and (b) impacts of thermal acclimation of photosynthesis on simulated changes. Between the end of the historical (1976–2005) and projected (2070–2099) periods simulated annual carbon uptake increased in the majority of ecosystems by 26.1%–63.3% for GPP and 15%–61.5% for NPP. Thermal acclimation of photosynthesis further increased GPP and NPP in tropical savannas by 27.2% and 22.4% and by 11% and 10.1% in tropical forests with positive effects concentrated in the wet season (tropical savannas) and the warmer months (tropical forests). We predicted minimal effects of thermal acclimation of photosynthesis on GPP, NPP, and carbon storage in Mediterranean woodlands, temperate woodlands, and temperate forests. Overall, positive effects were strongly enhanced by increasing CO2 concentrations under RCP8.5. We conclude that the direct effects of climate change will enhance carbon uptake and storage in Australian wooded ecosystems (likely due to CO2 enrichment) and that benefits of thermal acclimation of photosynthesis will be restricted to tropical ecoregions.
Global Change Biolog... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Malaysia, Germany, Malaysia, Australia, GermanyPublisher:Wiley Funded by:ARC | Fire Scar Impacts on Surf..., ARC | Discovery Projects - Gran..., ARC | Integrative assessment of... +4 projectsARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Integrative assessment of disturbance and land-use change on total greenhouse gas balance and nutrient cycling in savanna ecosystems ,ARC| Impacts of deforestation and afforestation on greenhouse gas emissions, and carbon and water resources in the Daly River catchment, north Australia ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to region ,ARC| Complexity in climate impact assessment: a methodology to address extremes ,ARC| eScience and Climate: Using Grid technology to build capacity in studies of Australian climate variabilityDavid Abramson; Lucas A. Cernusak; Caitlin E. Moore; Stefan K. Arndt; Samantha Grover; Samantha Grover; Derek Eamus; Michael R. Raupach; Lindsay B. Hutley; Stephen J. Livesley; Nigel J. Tapper; Jorg M. Hacker; Andrew Edwards; Simon Scheiter; Peter R. Briggs; Stefan W. Maier; Klaus Goergen; Vanessa Haverd; Petteri Uotila; Mila Bristow; Josep G. Canadell; Jason Beringer; Jason Beringer; Bradleys J. Evans; Jeremy Russell-Smith; Benedikt J. Fest; Amanda H. Lynch; Amanda H. Lynch; Kasturi Devi Kanniah; Kasturi Devi Kanniah;AbstractSavanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2015Full-Text: http://dx.doi.org/10.1111/gcb.12686Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2015Full-Text: http://dx.doi.org/10.1111/gcb.12686Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Stefan K. Arndt; Alan J. M. Baker; David Gregory; Hoi-Fei Mok; Ramaprasad Majumder; W. Scott Laidlaw;pmid: 23819263
Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2012.723063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2012.723063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Australia, Finland, DenmarkPublisher:American Geophysical Union (AGU) Funded by:ARC | Discovery Projects - Gran..., ARC | MEGA - Mobile Ecosystem G..., ARC | Methane uptake of forest ... +2 projectsARC| Discovery Projects - Grant ID: DP130101566 ,ARC| MEGA - Mobile Ecosystem Gas-exchange Analyser for Australian landscapes ,ARC| Methane uptake of forest soils ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to regionMallick, Kaniska; Toivonen, Erika; Trebs, Ivonne; Boegh, Eva; Cleverly, James; Eamus, Derek; Koivusalo, Harri; Drewry, Darren; Arndt, Stefan K.; Griebel, Anne; Beringer, Jason; Garcia; Monica;doi: 10.1029/2017wr021357
handle: 10138/298954
AbstractThermal infrared sensing of evapotranspiration (E) through surface energy balance (SEB) models is challenging due to uncertainties in determining the aerodynamic conductance (gA) and due to inequalities between radiometric (TR) and aerodynamic temperatures (T0). We evaluated a novel analytical model, the Surface Temperature Initiated Closure (STIC1.2), that physically integrates TR observations into a combined Penman‐Monteith Shuttleworth‐Wallace (PM‐SW) framework for directly estimating E, and overcoming the uncertainties associated with T0 and gA determination. An evaluation of STIC1.2 against high temporal frequency SEB flux measurements across an aridity gradient in Australia revealed a systematic error of 10–52% in E from mesic to arid ecosystem, and low systematic error in sensible heat fluxes (H) (12–25%) in all ecosystems. Uncertainty in TR versus moisture availability relationship, stationarity assumption in surface emissivity, and SEB closure corrections in E were predominantly responsible for systematic E errors in arid and semi‐arid ecosystems. A discrete correlation (r) of the model errors with observed soil moisture variance (r = 0.33–0.43), evaporative index (r = 0.77–0.90), and climatological dryness (r = 0.60–0.77) explained a strong association between ecohydrological extremes and TR in determining the error structure of STIC1.2 predicted fluxes. Being independent of any leaf‐scale biophysical parameterization, the model might be an important value addition in working group (WG2) of the Australian Energy and Water Exchange (OzEWEX) research initiative which focuses on observations to evaluate and compare biophysical models of energy and water cycle components.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1029/2017WR021357Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017wr021357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1029/2017WR021357Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017wr021357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Springer Science and Business Media LLC Funded by:ARC | Integrative assessment of...ARC| Integrative assessment of disturbance and land-use change on total greenhouse gas balance and nutrient cycling in savanna ecosystemsStephen J. Livesley; Lindsay B. Hutley; Tracy Z. Dawes; Stefan K. Arndt; Hizbullah Jamali;pmid: 21562867
Termites are a highly uncertain component in the global source budgets of CH(4) and CO(2). Large seasonal variations in termite mound fluxes of CH(4) and CO(2) have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH(4) and CO(2) fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas. Fluxes of CH(4) and CO(2) of termite mounds were 3.5-fold greater in the wet season as compared to the dry season and were a direct function of termite biomass. Termite biomass in mound samples was tenfold greater in the wet season compared to the dry season. When expressed per unit termite biomass, termite fluxes were only 1.2 (CH(4)) and 1.4 (CO(2))-fold greater in the wet season as compared to the dry season and could not explain the large seasonal variations in mound fluxes of CH(4) and CO(2). Seasonal variation in both gas diffusivity through mound walls and CH(4) oxidation by mound material was negligible. These results highlight for the first time that seasonal termite population dynamics are the main driver for the observed seasonal differences in mound fluxes of CH(4) and CO(2). These findings highlight the need to combine measurements of gas fluxes from termite mounds with detailed studies of termite population dynamics to reduce the uncertainty in quantifying seasonal variations in termite mound fluxes of CH(4) and CO(2).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-011-1991-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-011-1991-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Andrew Merchant; Stefan K. Arndt; Timothy M. Bleby; Stephen J. Livesley; Pauline F. Grierson;pmid: 18315535
ABSTRACTThis study investigated the role of quercitol in osmotic adjustment in field‐grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi‐arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO2 assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought‐stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically ‘plastic’ in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2008.01803.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2008.01803.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Stefan K. Arndt; Stephen E. Swearer; Benedikt J. Fest; Benedikt J. Fest;pmid: 34774962
Blue carbon ecosystems (BCEs), such as mangroves, tidal marshes, and seagrasses, are attracting interest for their potential to mitigate climate change arising from their high rates of carbon accumulation and the significant carbon stocks in their sediments. However, current sediment carbon sampling methods present a mixture of approaches adopted from paleoenvironmental methods focused on historical reconstruction of carbon accumulation, and from soil science methods developed to provide highly accurate and spatially representative carbon stock measurements. Currently, no international standard method for sediment carbon stock analysis exists. Consequently, current estimates of sediment carbon stock values for BCEs may have large uncertainties due to variable methodology. We reviewed and analysed the methods used 217 studies included in two recent global syntheses of carbon stocks in mangrove forest ecosystems to illustrate a lack of consistency in sediment sampling. We then outline how the choice of study design and field sampling methods can introduce inaccuracies and uncertainties in sediment carbon stock analysis. We conclude with examples of how each of these challenges can be resolved and how greater carbon stock quantification accuracy and higher spatial integration can be achieved for blue carbon ecosystems in the future.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu