- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, Germany, France, France, United Kingdom, Italy, NetherlandsPublisher:Informa UK Limited David M. Hannah; Ronald van Nooyen; Christophe Cudennec; Ana Mijic; Elena Toth; Magdalena Rogger; Yangbo Chen; Attilo Castellarin; Thibault Mathevet; Hongyi Li; Anne Van Loon; David C. Finger; Alfonso Mejia; Hubert H. G. Savenije; Adrián Pedrozo Acuña; Hilary McMillan; Hilary McMillan; Hafzullah Aksoy; Yan Huang; Alberto Montanari; Jun Xia; Giuliano Di Baldassarre; Arjen Ysbert Hoekstra; Alberto Viglione; Veena Srinivasan; Heidi Kreibich; María José Polo; Paul Smith; Shreedhar Maskey; Tobias Krueger; Dominc Mazvimavi; Victor Rosales; Bellie Sivakumar; Bellie Sivakumar; T. S. Bibikova; Junguo Liu; Alexander Gelfan;handle: 11583/2785328 , 11585/578277 , 10044/1/41801
In 2013, the International Association of Hydrological Sciences (IAHS) launched the hydrological decade 2013–2022 with the theme “Panta Rhei: Change in Hydrology and Society”. The decade recognizes the urgency of hydrological research to understand and predict the interactions of society and water, to support sustainable water resource use under changing climatic and environmental conditions. This paper reports on the first Panta Rhei biennium 2013–2015, providing a comprehensive resource that describes the scope and direction of Panta Rhei. We bring together the knowledge of all the Panta Rhei working groups, to summarize the most pressing research questions and how the hydrological community is progressing towards those goals. We draw out interconnections between different strands of research, and reflect on the need to take a global view on hydrology in the current era of human impacts and environmental change. Finally, we look back to the six driving science questions identified at the outset of Panta Rhei, to quantify progress towards those aims.
Hyper Article en Lig... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Hydrological Sciences JournalArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02626667.2016.1159308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Hydrological Sciences JournalArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02626667.2016.1159308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:IOP Publishing Funded by:UKRI | Community Water Managemen...UKRI| Community Water Management for a Liveable London (CAMELLIA)Ziyan Zhang; Barnaby Dobson; Yiannis Moustakis; Naika Meili; Ana Mijic; Adrian Butler; Paschalis Athanasios;handle: 10044/1/103118
Abstract Globally, urban areas face multiple challenges owing to climate change. Urban greening (UG) is an excellent option for mitigating flood risk and excess urban heat. Rainwater harvesting (RWH) systems can cope with plant irrigation needs and urban water management. In this study, we investigated how UG and RWH work together to mitigate environmental risks. By incorporating a new RWH module into the urban ecohydrological model Urban Tethys-Chloris (UT&C), we tested different uses of intervention approaches for 28 cities in the USA, spanning a variety of climates, population densities, and urban landscapes. UT&C was forced by the latest generation convection-permitting climate model simulations of the current (2001–2011) and end-of-century (RCP8.5) climate. Our results showed that neither UG nor RWH, through the irrigation of vegetation, could significantly contribute to mitigating the expected strong increase in 2 m urban canyon temperatures under a high-emission scenario. RWH alone can sufficiently offset the intensifying surface flood risk, effectively enhance water saving, and support UG to sustain a strong urban carbon sink, especially in dry regions. However, in these regions, RWH cannot fully fulfill plant water needs, and additional measures to meet irrigation demand are required to maximize carbon sequestration by urban vegetation.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/103118Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2023License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acbc90&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/103118Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2023License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acbc90&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 United States, Chile, United KingdomPublisher:MDPI AG Willa Paterson; Richard Rushforth; Benjamin Ruddell; Megan Konar; Ikechukwu Ahams; Jorge Gironás; Ana Mijic; Alfonso Mejia;doi: 10.3390/su7078461
handle: 10533/239343 , 2286/R.I.45066 , 10044/1/27034
Cities are hotspots of commodity consumption, with implications for both local and systemic water resources. Water flows “virtually” into and out of cities through the extensive cross-boundary exchange of goods and services. Both virtual and real water flows are affected by water supply investments and urban planning decisions, which influence residential, commercial, and industrial development. This form of water “teleconnection” is being increasingly recognized as an important aspect of water decision-making. The role of trade and virtual water flows as an alternative to expanding a city’s “real” water supply is rarely acknowledged, with an emphasis placed instead on monotonic expansion of engineering potable water supplies. We perform a literature review of water footprint studies to evaluate the potential and importance of taking virtual flows into account in urban planning and policy. We compare and contrast current methods to assess virtual water flows. We also identify and discuss priorities for future research in urban water footprint analysis.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461Arizona State University: ASU Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.45066Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27034Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7078461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461Arizona State University: ASU Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.45066Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27034Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7078461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, United StatesPublisher:American Geophysical Union (AGU) Jimmy O'Keeffe; Simon Moulds; Emma Bergin; Nick Brozović; Ana Mijic; Wouter Buytaert;doi: 10.1029/2018wr023038
handle: 10044/1/61275
AbstractUnderstanding water user behavior and its potential outcomes is important for the development of suitable water resource management options. Computational models are commonly used to assist water resource management decision making; however, while natural processes are increasingly well modeled, the inclusion of human behavior has lagged behind. Improved representation of irrigation water user behavior within models can provide more accurate and relevant information for irrigation management in the agricultural sector. This paper outlines a model that conceptualizes and proceduralizes observed farmer irrigation practices, highlighting impacts and interactions between the environment and behavior. It is developed using a bottom‐up approach, informed through field experience and farmer interaction in the state of Uttar Pradesh, northern India. Observed processes and dynamics were translated into parsimonious algorithms, which represent field conditions and provide a tool for policy analysis and water management. The modeling framework is applied to four districts in Uttar Pradesh and used to evaluate the potential impact of changes in climate and irrigation behavior on water resources and farmer livelihood. Results suggest changes in water user behavior could have a greater impact on water resources, crop yields, and farmer income than changes in future climate. In addition, increased abstraction may be sustainable but its viability varies across the study region. By simulating the feedbacks and interactions between the behavior of water users, irrigation officials and agricultural practices, this work highlights the importance of directly including water user behavior in policy making and operational tools to achieve water and livelihood security.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/61275Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018wr023038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/61275Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018wr023038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Ping Yu Fan; Kwok Pan Chun; Ana Mijic; Mou Leong Tan; Omer Yetemen;pmid: 35569354
Land use planning regulates surface hydrological processes by adjusting land properties with varied evapotranspiration ratios. However, a dearth of empirical spatial information hampers the regulation of place-specific hydrological processes. Therefore, this study proposed a Local Land Use Planning framework for EvapoTranspiration Ratio regulations (ETR-LLUP), which was tested for the developments of spatially-varied land use strategies in the Dongjiang River Basin (DRB) in Southern China. With the first attempt at integrating the Emerging Hot Spots Analysis (EHSA) with the Budyko framework, the spatiotemporal trends of evapotranspiration ratios based on evaporative index and dryness index, from 1992 to 2018, were illustrated. Then, representative land-cover types in each sub-basin were defined using Geographically Weighted Principal Component Analysis, in two wet years (1998 and 2016) and three dry years (2004, 2009, and 2018), which in turn were identified using the Standard Precipitation Index. Finally, Geographically Weighted Regressions (GWRs) were used to detect spatially-varied relationships between land-cover proportions and evaporative index in both dry and wet climates. Results showed that the DRB was consistently a water-limited region from 1992 to 2018, and the situation was getting worse. We also identified the upper DRB as hotspots for hydrological management. Forests and croplands experienced increasingly water stress compared to other vegetation types. More importantly, the spatial results of GWR models enabled us to adjust basin land use by 1) expanding and contracting a combination of 'mosaic natural vegetation' and 'broadleaved deciduous trees' in the western and eastern parts of the basin, respectively; and 2) increasing 'broadleaved evergreen trees' in the upstream parts of the basin. These spatially-varied land use strategies based on the ETR-LLUP framework allow for place-specific hydrological management during both dry and wet climates.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAperta - TÜBİTAK Açık ArşiviOther literature type . 2022License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAperta - TÜBİTAK Açık ArşiviOther literature type . 2022License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United States, United Kingdom, United StatesPublisher:Copernicus GmbH Funded by:UKRI | Hydrometeorological feedb...UKRI| Hydrometeorological feedbacks and changes in water storage and fluxes in northern IndiaJ. O'Keeffe; W. Buytaert; A. Mijic; N. Brozovic; R. Sinha;handle: 10044/1/73731 , 10044/1/25916
Abstract. For the development of sustainable and realistic water security, generating information on the behaviours, characteristics, and drivers of users, as well as on the resource itself, is essential. In this paper we present a methodology for collecting qualitative and quantitative data on water use practices through semi-structured interviews. This approach facilitates the collection of detailed information on actors' decisions in a convenient and cost-effective manner. Semi-structured interviews are organised around a topic guide, which helps lead the conversation in a standardised way while allowing sufficient opportunity for relevant issues to emerge. In addition, they can be used to obtain certain types of quantitative data. While not as accurate as direct measurements, they can provide useful information on local practices and users' insights. We present an application of the methodology on farmer water use in two districts in the state of Uttar Pradesh in northern India. By means of 100 farmer interviews, information was collected on various aspects of irrigation practices, including irrigation water volumes, irrigation cost, water source, and their spatial variability. Statistical analyses of the information, along with data visualisation, are also presented, indicating a significant variation in irrigation practices both within and between districts. Our application shows that semi-structured interviews are an effective and efficient method of collecting both qualitative and quantitative information for the assessment of drivers, behaviours, and their outcomes in a data-scarce region. The collection of this type of data could significantly improve insights on water resources, leading to more realistic management options and increased water security in the future.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/25916Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/73731Data sources: Bielefeld Academic Search Engine (BASE)Hydrology and Earth System Sciences (HESS)Article . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/hessd-...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-20-1911-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/25916Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/73731Data sources: Bielefeld Academic Search Engine (BASE)Hydrology and Earth System Sciences (HESS)Article . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/hessd-...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-20-1911-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Simon De Stercke; Ana Mijic; Wouter Buytaert; Vaibhav Chaturvedi;handle: 10044/1/63538
Abstract Cities are concentrations of demand to water and energy systems that rely on resources under increasing pressure from scarcity and climate change mitigation targets. They are linked in many ways across their different components, the collection of which is termed a nexus. In industrialised countries, the residential end-use component of the urban water-energy nexus has been identified as significant. However, the effect of the end-use water and energy interdependence on urban dynamics had not been studied. In this work, a novel system dynamics model is developed with an explicit representation of the water-energy interactions at the residential end use and their influence on the demand for resources. The model includes an endogenous carbon tax based climate change mitigation policy which aims to meet carbon targets by reducing consumer demand through price. It also encompasses water resources planning with respect to system capacity and supply augmentation. Using London as a case study, we show that the inclusion of end-use interactions has a major impact on the projections of water sector requirements. In particular, future water demand per capita is lower, and less supply augmentation is needed than would be planned for without considering the interactions. We find that deep decarbonisation of electricity is necessary to maintain an acceptable quality of life while remaining within water and greenhouse gas emissions constraints. The model results show a clear need for consideration of the end-use level water-energy interactions in policy analysis. The modelling tool provides a base for this that can be adapted to the context of any industrialised country.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/63538Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.08.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/63538Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.08.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, Germany, France, France, United Kingdom, Italy, NetherlandsPublisher:Informa UK Limited David M. Hannah; Ronald van Nooyen; Christophe Cudennec; Ana Mijic; Elena Toth; Magdalena Rogger; Yangbo Chen; Attilo Castellarin; Thibault Mathevet; Hongyi Li; Anne Van Loon; David C. Finger; Alfonso Mejia; Hubert H. G. Savenije; Adrián Pedrozo Acuña; Hilary McMillan; Hilary McMillan; Hafzullah Aksoy; Yan Huang; Alberto Montanari; Jun Xia; Giuliano Di Baldassarre; Arjen Ysbert Hoekstra; Alberto Viglione; Veena Srinivasan; Heidi Kreibich; María José Polo; Paul Smith; Shreedhar Maskey; Tobias Krueger; Dominc Mazvimavi; Victor Rosales; Bellie Sivakumar; Bellie Sivakumar; T. S. Bibikova; Junguo Liu; Alexander Gelfan;handle: 11583/2785328 , 11585/578277 , 10044/1/41801
In 2013, the International Association of Hydrological Sciences (IAHS) launched the hydrological decade 2013–2022 with the theme “Panta Rhei: Change in Hydrology and Society”. The decade recognizes the urgency of hydrological research to understand and predict the interactions of society and water, to support sustainable water resource use under changing climatic and environmental conditions. This paper reports on the first Panta Rhei biennium 2013–2015, providing a comprehensive resource that describes the scope and direction of Panta Rhei. We bring together the knowledge of all the Panta Rhei working groups, to summarize the most pressing research questions and how the hydrological community is progressing towards those goals. We draw out interconnections between different strands of research, and reflect on the need to take a global view on hydrology in the current era of human impacts and environmental change. Finally, we look back to the six driving science questions identified at the outset of Panta Rhei, to quantify progress towards those aims.
Hyper Article en Lig... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Hydrological Sciences JournalArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02626667.2016.1159308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Hydrological Sciences JournalArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02626667.2016.1159308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:IOP Publishing Funded by:UKRI | Community Water Managemen...UKRI| Community Water Management for a Liveable London (CAMELLIA)Ziyan Zhang; Barnaby Dobson; Yiannis Moustakis; Naika Meili; Ana Mijic; Adrian Butler; Paschalis Athanasios;handle: 10044/1/103118
Abstract Globally, urban areas face multiple challenges owing to climate change. Urban greening (UG) is an excellent option for mitigating flood risk and excess urban heat. Rainwater harvesting (RWH) systems can cope with plant irrigation needs and urban water management. In this study, we investigated how UG and RWH work together to mitigate environmental risks. By incorporating a new RWH module into the urban ecohydrological model Urban Tethys-Chloris (UT&C), we tested different uses of intervention approaches for 28 cities in the USA, spanning a variety of climates, population densities, and urban landscapes. UT&C was forced by the latest generation convection-permitting climate model simulations of the current (2001–2011) and end-of-century (RCP8.5) climate. Our results showed that neither UG nor RWH, through the irrigation of vegetation, could significantly contribute to mitigating the expected strong increase in 2 m urban canyon temperatures under a high-emission scenario. RWH alone can sufficiently offset the intensifying surface flood risk, effectively enhance water saving, and support UG to sustain a strong urban carbon sink, especially in dry regions. However, in these regions, RWH cannot fully fulfill plant water needs, and additional measures to meet irrigation demand are required to maximize carbon sequestration by urban vegetation.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/103118Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2023License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acbc90&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/103118Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2023License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acbc90&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 United States, Chile, United KingdomPublisher:MDPI AG Willa Paterson; Richard Rushforth; Benjamin Ruddell; Megan Konar; Ikechukwu Ahams; Jorge Gironás; Ana Mijic; Alfonso Mejia;doi: 10.3390/su7078461
handle: 10533/239343 , 2286/R.I.45066 , 10044/1/27034
Cities are hotspots of commodity consumption, with implications for both local and systemic water resources. Water flows “virtually” into and out of cities through the extensive cross-boundary exchange of goods and services. Both virtual and real water flows are affected by water supply investments and urban planning decisions, which influence residential, commercial, and industrial development. This form of water “teleconnection” is being increasingly recognized as an important aspect of water decision-making. The role of trade and virtual water flows as an alternative to expanding a city’s “real” water supply is rarely acknowledged, with an emphasis placed instead on monotonic expansion of engineering potable water supplies. We perform a literature review of water footprint studies to evaluate the potential and importance of taking virtual flows into account in urban planning and policy. We compare and contrast current methods to assess virtual water flows. We also identify and discuss priorities for future research in urban water footprint analysis.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461Arizona State University: ASU Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.45066Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27034Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7078461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461Arizona State University: ASU Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.45066Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27034Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDFull-Text: https://doi.org/10.3390/su7078461Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7078461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, United StatesPublisher:American Geophysical Union (AGU) Jimmy O'Keeffe; Simon Moulds; Emma Bergin; Nick Brozović; Ana Mijic; Wouter Buytaert;doi: 10.1029/2018wr023038
handle: 10044/1/61275
AbstractUnderstanding water user behavior and its potential outcomes is important for the development of suitable water resource management options. Computational models are commonly used to assist water resource management decision making; however, while natural processes are increasingly well modeled, the inclusion of human behavior has lagged behind. Improved representation of irrigation water user behavior within models can provide more accurate and relevant information for irrigation management in the agricultural sector. This paper outlines a model that conceptualizes and proceduralizes observed farmer irrigation practices, highlighting impacts and interactions between the environment and behavior. It is developed using a bottom‐up approach, informed through field experience and farmer interaction in the state of Uttar Pradesh, northern India. Observed processes and dynamics were translated into parsimonious algorithms, which represent field conditions and provide a tool for policy analysis and water management. The modeling framework is applied to four districts in Uttar Pradesh and used to evaluate the potential impact of changes in climate and irrigation behavior on water resources and farmer livelihood. Results suggest changes in water user behavior could have a greater impact on water resources, crop yields, and farmer income than changes in future climate. In addition, increased abstraction may be sustainable but its viability varies across the study region. By simulating the feedbacks and interactions between the behavior of water users, irrigation officials and agricultural practices, this work highlights the importance of directly including water user behavior in policy making and operational tools to achieve water and livelihood security.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/61275Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018wr023038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/61275Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018wr023038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Ping Yu Fan; Kwok Pan Chun; Ana Mijic; Mou Leong Tan; Omer Yetemen;pmid: 35569354
Land use planning regulates surface hydrological processes by adjusting land properties with varied evapotranspiration ratios. However, a dearth of empirical spatial information hampers the regulation of place-specific hydrological processes. Therefore, this study proposed a Local Land Use Planning framework for EvapoTranspiration Ratio regulations (ETR-LLUP), which was tested for the developments of spatially-varied land use strategies in the Dongjiang River Basin (DRB) in Southern China. With the first attempt at integrating the Emerging Hot Spots Analysis (EHSA) with the Budyko framework, the spatiotemporal trends of evapotranspiration ratios based on evaporative index and dryness index, from 1992 to 2018, were illustrated. Then, representative land-cover types in each sub-basin were defined using Geographically Weighted Principal Component Analysis, in two wet years (1998 and 2016) and three dry years (2004, 2009, and 2018), which in turn were identified using the Standard Precipitation Index. Finally, Geographically Weighted Regressions (GWRs) were used to detect spatially-varied relationships between land-cover proportions and evaporative index in both dry and wet climates. Results showed that the DRB was consistently a water-limited region from 1992 to 2018, and the situation was getting worse. We also identified the upper DRB as hotspots for hydrological management. Forests and croplands experienced increasingly water stress compared to other vegetation types. More importantly, the spatial results of GWR models enabled us to adjust basin land use by 1) expanding and contracting a combination of 'mosaic natural vegetation' and 'broadleaved deciduous trees' in the western and eastern parts of the basin, respectively; and 2) increasing 'broadleaved evergreen trees' in the upstream parts of the basin. These spatially-varied land use strategies based on the ETR-LLUP framework allow for place-specific hydrological management during both dry and wet climates.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAperta - TÜBİTAK Açık ArşiviOther literature type . 2022License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAperta - TÜBİTAK Açık ArşiviOther literature type . 2022License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United States, United Kingdom, United StatesPublisher:Copernicus GmbH Funded by:UKRI | Hydrometeorological feedb...UKRI| Hydrometeorological feedbacks and changes in water storage and fluxes in northern IndiaJ. O'Keeffe; W. Buytaert; A. Mijic; N. Brozovic; R. Sinha;handle: 10044/1/73731 , 10044/1/25916
Abstract. For the development of sustainable and realistic water security, generating information on the behaviours, characteristics, and drivers of users, as well as on the resource itself, is essential. In this paper we present a methodology for collecting qualitative and quantitative data on water use practices through semi-structured interviews. This approach facilitates the collection of detailed information on actors' decisions in a convenient and cost-effective manner. Semi-structured interviews are organised around a topic guide, which helps lead the conversation in a standardised way while allowing sufficient opportunity for relevant issues to emerge. In addition, they can be used to obtain certain types of quantitative data. While not as accurate as direct measurements, they can provide useful information on local practices and users' insights. We present an application of the methodology on farmer water use in two districts in the state of Uttar Pradesh in northern India. By means of 100 farmer interviews, information was collected on various aspects of irrigation practices, including irrigation water volumes, irrigation cost, water source, and their spatial variability. Statistical analyses of the information, along with data visualisation, are also presented, indicating a significant variation in irrigation practices both within and between districts. Our application shows that semi-structured interviews are an effective and efficient method of collecting both qualitative and quantitative information for the assessment of drivers, behaviours, and their outcomes in a data-scarce region. The collection of this type of data could significantly improve insights on water resources, leading to more realistic management options and increased water security in the future.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/25916Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/73731Data sources: Bielefeld Academic Search Engine (BASE)Hydrology and Earth System Sciences (HESS)Article . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/hessd-...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-20-1911-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/25916Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/73731Data sources: Bielefeld Academic Search Engine (BASE)Hydrology and Earth System Sciences (HESS)Article . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/hessd-...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-20-1911-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Simon De Stercke; Ana Mijic; Wouter Buytaert; Vaibhav Chaturvedi;handle: 10044/1/63538
Abstract Cities are concentrations of demand to water and energy systems that rely on resources under increasing pressure from scarcity and climate change mitigation targets. They are linked in many ways across their different components, the collection of which is termed a nexus. In industrialised countries, the residential end-use component of the urban water-energy nexus has been identified as significant. However, the effect of the end-use water and energy interdependence on urban dynamics had not been studied. In this work, a novel system dynamics model is developed with an explicit representation of the water-energy interactions at the residential end use and their influence on the demand for resources. The model includes an endogenous carbon tax based climate change mitigation policy which aims to meet carbon targets by reducing consumer demand through price. It also encompasses water resources planning with respect to system capacity and supply augmentation. Using London as a case study, we show that the inclusion of end-use interactions has a major impact on the projections of water sector requirements. In particular, future water demand per capita is lower, and less supply augmentation is needed than would be planned for without considering the interactions. We find that deep decarbonisation of electricity is necessary to maintain an acceptable quality of life while remaining within water and greenhouse gas emissions constraints. The model results show a clear need for consideration of the end-use level water-energy interactions in policy analysis. The modelling tool provides a base for this that can be adapted to the context of any industrialised country.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/63538Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.08.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/63538Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.08.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu