- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Elsevier BV Rouch, H.; Geoffroy, O.; Rubiolo, P.; Laureau, A.; Brovchenko, M.; Heuer, D.; Merle-Lucotte, E.;Abstract A thermal–hydraulics study of the core of the Molten Salt Fast Reactor (MSFR) is presented. The numerical simulations were carried-out using a Computation Fluid Dynamic code. The main objectives of the thermal–hydraulics studies are to design the core cavity walls in order to increase the overall flow mixing and to reduce the temperature peaking factors in the salt and on the core walls. The results of the CFD simulations show that for the chosen core design acceptable temperature distributions can be obtained by using a curved core cavity shape, inlets and outlets. The hot spot temperature is less than 10 °C above the average core outlet temperature and is located in the centre of the top wall of the core. The results show also a moderate level of sensitivity to the working point.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 FrancePublisher:MDPI AG Authors: Mauricio Tano; Pablo Rubiolo;doi: 10.3390/en15196861
Liquid fuel nuclear reactors offer innovative possibilities in terms of nuclear reactor designs and passive safety systems. Molten Salts Reactors (MSRs) with a fast spectrum are a particular type of these reactors using liquid fuel. MSFRs often involve large open cavities in their core in which the liquid fuel circulates at a high speed to transport the heat generated by the nuclear reactions into the heat exchangers. This high-speed flow yields a turbulent field with large Reynolds numbers in the reactor core. Since the nuclear power, the neutron precursor’s transport and the thermal exchanges are strongly coupled in the MSFR’s core cavity, having accurate turbulent models for the liquid fuel flow is necessary to avoid introducing significant errors in the numerical simulations of these reactors. Nonetheless, high-accuracy simulations of the turbulent flow field in the reactor cavity of these reactors are usually prohibitively expensive in terms of computational resources, especially when performing multiphysics numerical calculations. Therefore, in this work, we propose a novel method using a modified genetic algorithm to optimize the calculation of the Reynolds Shear Stress Tensor (RST) used for turbulence modeling. The proposed optimization methodology is particularly suitable for advanced liquid fuel reactors such as the MSFRs since it allows the development of high-accuracy but still low-computational-cost turbulence models for the liquid fuel. We demonstrate the applicability of this approach by developing high accuracy Reynolds-Averaged Navier–Stokes (RANS) models (averaged flow error less than 5%) for a low and a large aspect ratio in a Backward-Facing Step (BFS) section particularly challenging for RANS models. The newly developed turbulence models better capture the flow field after the boundary layer tipping, over the extent of the recirculation bubble, and near the boundary layer reattachment region in both BFS configurations. The main reason for these improvements is that the developed models better capture the flow field turbulent anisotropy in the bulk region of the BFS. Then, we illustrate the interest in using this turbulence modeling approach for the case of an MSFR by quantifying the impact of the turbulence modeling on the reactor key parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, FrancePublisher:Elsevier BV Funded by:EC | SAMOFAREC| SAMOFARAuthors: Marco Tiberga; Rodrigo Gonzalez Gonzaga de Oliveira; Eric Cervi; Juan Antonio Blanco; +4 AuthorsMarco Tiberga; Rodrigo Gonzalez Gonzaga de Oliveira; Eric Cervi; Juan Antonio Blanco; Stefano Lorenzi; Manuele Aufiero; Danny Lathouwers; Pablo Rubiolo;Verification and validation of multi-physics codes dedicated to fast-spectrum molten salt reactors (MSR) is a very challenging task. Existing benchmarks are meant for single-physics codes, while experimental data for validation are absent. This is concerning, given the importance numerical simulations have in the development of fast MSR designs. Here, we propose the use of a coupled numerical benchmark specifically designed to assess the physics-coupling capabilities of the aforementioned codes. The benchmark focuses on the specific characteristics of fast MSRs and features a step-by-step approach, where physical phenomena are gradually coupled to easily identify sources of error. We collect and compare the results obtained during the benchmarking campaign of four multi-physics tools developed within the SAMOFAR project. Results show excellent agreement for all the steps of the benchmark. The benchmark generality and the broad spectrum of results provided constitute a useful tool for the testing and development of similar multi-physics codes.
Annals of Nuclear En... arrow_drop_down Annals of Nuclear EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2020.107428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 96visibility views 96 download downloads 241 Powered bymore_vert Annals of Nuclear En... arrow_drop_down Annals of Nuclear EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2020.107428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 France, FrancePublisher:EDP Sciences Funded by:EC | SAMOFAREC| SAMOFARAuthors: Giraud, Julien; Ghetta, Véronique; Rubiolo, Pablo; Tano Retamales, Mauricio;Experimental studies have been developed on a new freeze plug concept for safety valves in facilities using molten salt. They are designed to allow the closure of an upstream circuit by solidifying the molten salt in a section of the device and to passively melt in case of a loss of electric power, thus releasing the upper fluid. The working principle of these cold plug designs relies on the control of the heat transfer balance inside the device, which determines whether the salt inside the cold plug solidifies or melts. The device is mainly composed of steel masses that are dimensioned to provide sufficient thermal heat storage to melt the salt and thus open the cold plug after the electric power is stopped. The final goal of the work is to provide useful recommendations and guidelines for the design of a cold plug for the emergency draining system of a molten salt reactor. Some numerical thermal simulations were performed with ANSYS mechanical (Finite Element Method) to be compared with results of the experiments and to make extrapolations for a new component to be used in a reactor.
Hyper Article en Lig... arrow_drop_down HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)Article . 2019Full-Text: https://hal.science/hal-02277836Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02277836Data sources: Bielefeld Academic Search Engine (BASE)EPJ Nuclear Sciences & TechnologiesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEPJ Nuclear Sciences & TechnologiesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjn/2019005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 42 Powered bymore_vert Hyper Article en Lig... arrow_drop_down HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)Article . 2019Full-Text: https://hal.science/hal-02277836Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02277836Data sources: Bielefeld Academic Search Engine (BASE)EPJ Nuclear Sciences & TechnologiesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEPJ Nuclear Sciences & TechnologiesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjn/2019005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Elsevier BV Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Brovchenko, M.; Ghetta, V.; Rubiolo, P.;There is currently a renewed interest in molten salt reactors, due to recent conceptual developments on fast neutron spectrum molten salt reactors (MSFRs) using fluoride salts. It has been recognized as a long term alternative to solid-fueled fast neutron systems with a unique potential (large negative temperature and void coefficients, lower fissile inventory, no initial criticality reserve, simplified fuel cycle, wastes reduction etc.) and is thus one of the reference reactors of the Generation IV International Forum. In the MSFR, the liquid fuel processing is part of the reactor where a small side stream of the molten salt is processed for fission product removal and then returned to the reactor. Because of this characteristic, the MSFR can operate with widely varying fuel compositions, so that the MSFR concept may use as initial fissile load, 233U or enriched uranium or also the transuranic elements currently produced by light water reactors. This paper addresses the characteristics of these different launching modes of the MSFR and the Thorium fuel cycle, in terms of safety, proliferation, breeding, and deployment capacities of these reactor configurations. To illustrate the deployment capacities of the MSFR concept, a French nuclear deployment scenario is finally presented, demonstrating that launching the Thorium fuel cycle is easily feasible while closing the current fuel cycle and optimizing the long-term waste management via stockpile incineration in MSRs.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 163 citations 163 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2003 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Pablo Rubiolo; Principal Investigator;doi: 10.2172/810718
The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/810718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/810718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Pablo Rubiolo; Carlo Fiorina; Andreas Pautz; Andreas Pautz; Konstantin Mikityuk; Nordine Kerkar;The Laboratory for Reactor Physics and Systems Behaviour at the PSI and the EPFL has been developing in recent years a new code system for reactor analysis based on OpenFOAM®. The objective is to supplement available legacy codes with a modern tool featuring state-of-the-art characteristics in terms of scalability, programming approach and flexibility. As part of this project, a new solver has been developed for the eigenvalue and transient solution of multi-group diffusion equations. Several features distinguish the developed solver from other available codes, in particular: object oriented programming to ease code modification and maintenance; modern parallel computing capabilities; use of general unstructured meshes; possibility of mesh deformation; cell-wise parametrization of cross-sections; and arbitrary energy group structure. In addition, the solver is integrated into the GeN-Foam multi-physics solver. The general features of the solver and its integration with GeN-Foam have already been presented in previous publications. The present paper describes the diffusion solver in more details and provides an overview of new features recently implemented, including the use of acceleration techniques and discontinuity factors. In addition, a code verification is performed through a comparison with Monte Carlo results for both a thermal and a fast reactor system.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2016.05.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2016.05.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Elsevier BV Rouch, H.; Geoffroy, O.; Rubiolo, P.; Laureau, A.; Brovchenko, M.; Heuer, D.; Merle-Lucotte, E.;Abstract A thermal–hydraulics study of the core of the Molten Salt Fast Reactor (MSFR) is presented. The numerical simulations were carried-out using a Computation Fluid Dynamic code. The main objectives of the thermal–hydraulics studies are to design the core cavity walls in order to increase the overall flow mixing and to reduce the temperature peaking factors in the salt and on the core walls. The results of the CFD simulations show that for the chosen core design acceptable temperature distributions can be obtained by using a curved core cavity shape, inlets and outlets. The hot spot temperature is less than 10 °C above the average core outlet temperature and is located in the centre of the top wall of the core. The results show also a moderate level of sensitivity to the working point.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 FrancePublisher:MDPI AG Authors: Mauricio Tano; Pablo Rubiolo;doi: 10.3390/en15196861
Liquid fuel nuclear reactors offer innovative possibilities in terms of nuclear reactor designs and passive safety systems. Molten Salts Reactors (MSRs) with a fast spectrum are a particular type of these reactors using liquid fuel. MSFRs often involve large open cavities in their core in which the liquid fuel circulates at a high speed to transport the heat generated by the nuclear reactions into the heat exchangers. This high-speed flow yields a turbulent field with large Reynolds numbers in the reactor core. Since the nuclear power, the neutron precursor’s transport and the thermal exchanges are strongly coupled in the MSFR’s core cavity, having accurate turbulent models for the liquid fuel flow is necessary to avoid introducing significant errors in the numerical simulations of these reactors. Nonetheless, high-accuracy simulations of the turbulent flow field in the reactor cavity of these reactors are usually prohibitively expensive in terms of computational resources, especially when performing multiphysics numerical calculations. Therefore, in this work, we propose a novel method using a modified genetic algorithm to optimize the calculation of the Reynolds Shear Stress Tensor (RST) used for turbulence modeling. The proposed optimization methodology is particularly suitable for advanced liquid fuel reactors such as the MSFRs since it allows the development of high-accuracy but still low-computational-cost turbulence models for the liquid fuel. We demonstrate the applicability of this approach by developing high accuracy Reynolds-Averaged Navier–Stokes (RANS) models (averaged flow error less than 5%) for a low and a large aspect ratio in a Backward-Facing Step (BFS) section particularly challenging for RANS models. The newly developed turbulence models better capture the flow field after the boundary layer tipping, over the extent of the recirculation bubble, and near the boundary layer reattachment region in both BFS configurations. The main reason for these improvements is that the developed models better capture the flow field turbulent anisotropy in the bulk region of the BFS. Then, we illustrate the interest in using this turbulence modeling approach for the case of an MSFR by quantifying the impact of the turbulence modeling on the reactor key parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, FrancePublisher:Elsevier BV Funded by:EC | SAMOFAREC| SAMOFARAuthors: Marco Tiberga; Rodrigo Gonzalez Gonzaga de Oliveira; Eric Cervi; Juan Antonio Blanco; +4 AuthorsMarco Tiberga; Rodrigo Gonzalez Gonzaga de Oliveira; Eric Cervi; Juan Antonio Blanco; Stefano Lorenzi; Manuele Aufiero; Danny Lathouwers; Pablo Rubiolo;Verification and validation of multi-physics codes dedicated to fast-spectrum molten salt reactors (MSR) is a very challenging task. Existing benchmarks are meant for single-physics codes, while experimental data for validation are absent. This is concerning, given the importance numerical simulations have in the development of fast MSR designs. Here, we propose the use of a coupled numerical benchmark specifically designed to assess the physics-coupling capabilities of the aforementioned codes. The benchmark focuses on the specific characteristics of fast MSRs and features a step-by-step approach, where physical phenomena are gradually coupled to easily identify sources of error. We collect and compare the results obtained during the benchmarking campaign of four multi-physics tools developed within the SAMOFAR project. Results show excellent agreement for all the steps of the benchmark. The benchmark generality and the broad spectrum of results provided constitute a useful tool for the testing and development of similar multi-physics codes.
Annals of Nuclear En... arrow_drop_down Annals of Nuclear EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2020.107428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 96visibility views 96 download downloads 241 Powered bymore_vert Annals of Nuclear En... arrow_drop_down Annals of Nuclear EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2020.107428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 France, FrancePublisher:EDP Sciences Funded by:EC | SAMOFAREC| SAMOFARAuthors: Giraud, Julien; Ghetta, Véronique; Rubiolo, Pablo; Tano Retamales, Mauricio;Experimental studies have been developed on a new freeze plug concept for safety valves in facilities using molten salt. They are designed to allow the closure of an upstream circuit by solidifying the molten salt in a section of the device and to passively melt in case of a loss of electric power, thus releasing the upper fluid. The working principle of these cold plug designs relies on the control of the heat transfer balance inside the device, which determines whether the salt inside the cold plug solidifies or melts. The device is mainly composed of steel masses that are dimensioned to provide sufficient thermal heat storage to melt the salt and thus open the cold plug after the electric power is stopped. The final goal of the work is to provide useful recommendations and guidelines for the design of a cold plug for the emergency draining system of a molten salt reactor. Some numerical thermal simulations were performed with ANSYS mechanical (Finite Element Method) to be compared with results of the experiments and to make extrapolations for a new component to be used in a reactor.
Hyper Article en Lig... arrow_drop_down HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)Article . 2019Full-Text: https://hal.science/hal-02277836Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02277836Data sources: Bielefeld Academic Search Engine (BASE)EPJ Nuclear Sciences & TechnologiesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEPJ Nuclear Sciences & TechnologiesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjn/2019005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 42 Powered bymore_vert Hyper Article en Lig... arrow_drop_down HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)Article . 2019Full-Text: https://hal.science/hal-02277836Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02277836Data sources: Bielefeld Academic Search Engine (BASE)EPJ Nuclear Sciences & TechnologiesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEPJ Nuclear Sciences & TechnologiesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjn/2019005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Elsevier BV Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Brovchenko, M.; Ghetta, V.; Rubiolo, P.;There is currently a renewed interest in molten salt reactors, due to recent conceptual developments on fast neutron spectrum molten salt reactors (MSFRs) using fluoride salts. It has been recognized as a long term alternative to solid-fueled fast neutron systems with a unique potential (large negative temperature and void coefficients, lower fissile inventory, no initial criticality reserve, simplified fuel cycle, wastes reduction etc.) and is thus one of the reference reactors of the Generation IV International Forum. In the MSFR, the liquid fuel processing is part of the reactor where a small side stream of the molten salt is processed for fission product removal and then returned to the reactor. Because of this characteristic, the MSFR can operate with widely varying fuel compositions, so that the MSFR concept may use as initial fissile load, 233U or enriched uranium or also the transuranic elements currently produced by light water reactors. This paper addresses the characteristics of these different launching modes of the MSFR and the Thorium fuel cycle, in terms of safety, proliferation, breeding, and deployment capacities of these reactor configurations. To illustrate the deployment capacities of the MSFR concept, a French nuclear deployment scenario is finally presented, demonstrating that launching the Thorium fuel cycle is easily feasible while closing the current fuel cycle and optimizing the long-term waste management via stockpile incineration in MSRs.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 163 citations 163 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2003 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Pablo Rubiolo; Principal Investigator;doi: 10.2172/810718
The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/810718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/810718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Pablo Rubiolo; Carlo Fiorina; Andreas Pautz; Andreas Pautz; Konstantin Mikityuk; Nordine Kerkar;The Laboratory for Reactor Physics and Systems Behaviour at the PSI and the EPFL has been developing in recent years a new code system for reactor analysis based on OpenFOAM®. The objective is to supplement available legacy codes with a modern tool featuring state-of-the-art characteristics in terms of scalability, programming approach and flexibility. As part of this project, a new solver has been developed for the eigenvalue and transient solution of multi-group diffusion equations. Several features distinguish the developed solver from other available codes, in particular: object oriented programming to ease code modification and maintenance; modern parallel computing capabilities; use of general unstructured meshes; possibility of mesh deformation; cell-wise parametrization of cross-sections; and arbitrary energy group structure. In addition, the solver is integrated into the GeN-Foam multi-physics solver. The general features of the solver and its integration with GeN-Foam have already been presented in previous publications. The present paper describes the diffusion solver in more details and provides an overview of new features recently implemented, including the use of acceleration techniques and discontinuity factors. In addition, a code verification is performed through a comparison with Monte Carlo results for both a thermal and a fast reactor system.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2016.05.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2016.05.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu