- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:CSIRO Publishing N. R. Foster; B. M. Gillanders; A. R. Jones; J. M. Young; M. Waycott;doi: 10.1071/mf19175
handle: 2440/129370
Seagrass, saltmarsh and mangrove habitats are declining around the world as anthropogenic activity and climate change intensify. To be able to effectively restore and maintain healthy coastal-vegetation communities, we must understand how and why they have changed in the past. Identifying shifts in vegetation communities, and the environmental or human drivers of these, can inform successful management and restoration strategies. Unfortunately, long-term data (i.e. decades to hundreds of years) on coastal vegetated ecosystems that can discern community-level changes are mostly non-existent in the scientific record. We propose implementing DNA extracted from coastal sediments to provide an alternative approach to long-term ecological reconstruction for coastal vegetated ecosystems. This type of DNA is called ‘environmental DNA’ and has previously been used to generate long-term datasets for other vegetated systems but has not yet been applied to vegetation change in coastal settings. In this overview, we explore the idea of using sediment eDNA as a long-term monitoring tool for seagrass, saltmarsh and mangrove communities. We see real potential in this approach for reconstructing long-term ecological histories of coastal vegetated ecosystems, and advocate that further research be undertaken to develop appropriate methods for its use.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/2440/129370Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mf19175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/2440/129370Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mf19175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, ItalyPublisher:Wiley Funded by:ARC | Ocean acidification and r..., ARC | Kelp forest ecosystems ne...ARC| Ocean acidification and rising sea temperature effect on fish ,ARC| Kelp forest ecosystems near and far: Putting a new theory explaining dynamic ecological systems to the testSean D. Connell; Zoë A. Doubleday; Nicole R. Foster; Sarah B. Hamlyn; Christopher D. G. Harley; Brian Helmuth; Brendan P. Kelaher; Ivan Nagelkerken; Kirsten L. Rodgers; Gianluca Sarà; Bayden D. Russell;AbstractEcologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO2‐driven interactions between species can account for such reversals in dominance; i.e., the displacement of dominants (kelp forests) by subordinates (turf algae). We established that CO2 enrichment had a direct positive effect on productivity of turfs, but a negligible effect on kelp. CO2 enrichment further suppressed the abundance and feeding rate of the primary grazer of turfs (sea urchins), but had an opposite effect on the minor grazer (gastropods). Thus, boosted production of subordinate producers, exacerbated by a net reduction in its consumption by primary grazers, accounts for community change (i.e., turf displacing kelp). Ecosystem collapse, therefore, is more likely when resource enrichment alters competitive dominance of producers, and consumers fail to compensate. By recognizing such duality in the responses of interacting species to disturbance, which may stabilize or exacerbate change, we can begin to understand how intensifying human disturbances determine whether or not ecosystems undergo phase shifts.
Archivio istituziona... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs RepositorySouthern Cross University: epublications@SCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs RepositorySouthern Cross University: epublications@SCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:CSIRO Publishing N. R. Foster; B. M. Gillanders; A. R. Jones; J. M. Young; M. Waycott;doi: 10.1071/mf19175
handle: 2440/129370
Seagrass, saltmarsh and mangrove habitats are declining around the world as anthropogenic activity and climate change intensify. To be able to effectively restore and maintain healthy coastal-vegetation communities, we must understand how and why they have changed in the past. Identifying shifts in vegetation communities, and the environmental or human drivers of these, can inform successful management and restoration strategies. Unfortunately, long-term data (i.e. decades to hundreds of years) on coastal vegetated ecosystems that can discern community-level changes are mostly non-existent in the scientific record. We propose implementing DNA extracted from coastal sediments to provide an alternative approach to long-term ecological reconstruction for coastal vegetated ecosystems. This type of DNA is called ‘environmental DNA’ and has previously been used to generate long-term datasets for other vegetated systems but has not yet been applied to vegetation change in coastal settings. In this overview, we explore the idea of using sediment eDNA as a long-term monitoring tool for seagrass, saltmarsh and mangrove communities. We see real potential in this approach for reconstructing long-term ecological histories of coastal vegetated ecosystems, and advocate that further research be undertaken to develop appropriate methods for its use.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/2440/129370Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mf19175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/2440/129370Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mf19175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, ItalyPublisher:Wiley Funded by:ARC | Ocean acidification and r..., ARC | Kelp forest ecosystems ne...ARC| Ocean acidification and rising sea temperature effect on fish ,ARC| Kelp forest ecosystems near and far: Putting a new theory explaining dynamic ecological systems to the testSean D. Connell; Zoë A. Doubleday; Nicole R. Foster; Sarah B. Hamlyn; Christopher D. G. Harley; Brian Helmuth; Brendan P. Kelaher; Ivan Nagelkerken; Kirsten L. Rodgers; Gianluca Sarà; Bayden D. Russell;AbstractEcologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO2‐driven interactions between species can account for such reversals in dominance; i.e., the displacement of dominants (kelp forests) by subordinates (turf algae). We established that CO2 enrichment had a direct positive effect on productivity of turfs, but a negligible effect on kelp. CO2 enrichment further suppressed the abundance and feeding rate of the primary grazer of turfs (sea urchins), but had an opposite effect on the minor grazer (gastropods). Thus, boosted production of subordinate producers, exacerbated by a net reduction in its consumption by primary grazers, accounts for community change (i.e., turf displacing kelp). Ecosystem collapse, therefore, is more likely when resource enrichment alters competitive dominance of producers, and consumers fail to compensate. By recognizing such duality in the responses of interacting species to disturbance, which may stabilize or exacerbate change, we can begin to understand how intensifying human disturbances determine whether or not ecosystems undergo phase shifts.
Archivio istituziona... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs RepositorySouthern Cross University: epublications@SCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs RepositorySouthern Cross University: epublications@SCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu