- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:FapUNIFESP (SciELO) Authors: TURRA, ALEXANDER; AMARAL, ANTONIA CECÍLIA ZACAGNINI; CIOTTI, AUREA MARIA; WONGTSCHOWSKI, CARMEN L.D.B. ROSSI; +6 AuthorsTURRA, ALEXANDER; AMARAL, ANTONIA CECÍLIA ZACAGNINI; CIOTTI, AUREA MARIA; WONGTSCHOWSKI, CARMEN L.D.B. ROSSI; SCHAEFFER-NOVELLI, YARA; MARQUES, ANTONIO CARLOS; SIEGLE, EDUARDO; SINISGALLI, PAULO ANTONIO DE ALMEIDA; SANTOS, CLÁUDIA REGINA DOS; CARMO, ALINE BORGES DO;Abstract The Environmental Impact Assessment (EIA) aims to analyze the environmental viability of projects, but exhibits problems that compromise its quality, such as the fragmented, technocratic and positivist vision. The prediction of environmental impacts can be improved using the ecosystem approach, considering the processes and the ecosystem services affected. The present work applied this approach in the expansion project of the Port of São Sebastião (São Paulo, Brazil), in which the EIA was judicially questioned, based on documental analysis and discussion by specialists. Unlike foreseen in the EIA, the analysis of oceanographic processes showed direct and indirect impacts on ecosystem services and benefits, irreversible and/or of great magnitude. The analysis also allowed an improvement to the comprehension not only on the effects on the environmental components and processes (hydrodynamics, sediment dynamics and biodiversity), but also on human well-being, evidencing the benefits of applying the ecosystem approach in the EIA.
Ambiente & Socie... arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2017License: CC BY NCData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/1809-4422asoc166v2022017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ambiente & Socie... arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2017License: CC BY NCData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/1809-4422asoc166v2022017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 BrazilPublisher:Elsevier BV Authors: Leite, Lucas G.; Ciotti, Aurea M.; Christofoletti, Ronaldo Adriano;pmid: 22738760
Trampling by human visitors to rocky shores is a known stressor on macroorganisms. However, the effects of trampling on rocky intertidal biofilm, a complex association of microorganisms of ecological importance in coastal communities, have not been quantified. We evaluated the impact of trampling frequency and intensity on total biomass of epilithic microalgae on intertidal rocky shores in the southeast of Brazil. There was a trend of increase in the variability of biomass of biofilm in function of intensity of trampling, but no significant effects emerged among trampling treatments. The low influence of trampling on biofilm might be a result of the small dimensions of the organisms coupled with their natural resilience and roughness of the substrate; the former preventing the removal of biofilm layers by shoes and facilitating their quick recovery. Our results provide insights for management and conservation of coastal ecosystems revealing a weaker impact of trampling on biofilm than that reported on macroorganisms.
Marine Environmental... arrow_drop_down Marine Environmental ResearchArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Federal de São Paulo (UNIFESP): Repositório InstitucionalArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2012.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Marine Environmental... arrow_drop_down Marine Environmental ResearchArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Federal de São Paulo (UNIFESP): Repositório InstitucionalArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2012.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, Australia, United Kingdom, Australia, GermanyPublisher:Wiley Publicly fundedMarion Gehlen; Philip W. Boyd; Philip W. Boyd; Áurea Maria Ciotti; Uta Passow; Haimanti Biswas; Catriona L. Hurd; Marcello Vichi; Jonathan N. Havenhand; David A. Hutchins; Sam Dupont; Max S Rintoul; Haruko Kurihara; Jorge M. Navarro; Göran E. Nilsson; Christina M. McGraw; Ulf Riebesell; Sinéad Collins; Katharina E. Fabricius; Hans-Otto Pörtner; Kunshan Gao; Jean-Pierre Gattuso;AbstractMarine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy‐making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process‐oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science‐based policy formulation.
OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 319 citations 319 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:FapUNIFESP (SciELO) Authors: TURRA, ALEXANDER; AMARAL, ANTONIA CECÍLIA ZACAGNINI; CIOTTI, AUREA MARIA; WONGTSCHOWSKI, CARMEN L.D.B. ROSSI; +6 AuthorsTURRA, ALEXANDER; AMARAL, ANTONIA CECÍLIA ZACAGNINI; CIOTTI, AUREA MARIA; WONGTSCHOWSKI, CARMEN L.D.B. ROSSI; SCHAEFFER-NOVELLI, YARA; MARQUES, ANTONIO CARLOS; SIEGLE, EDUARDO; SINISGALLI, PAULO ANTONIO DE ALMEIDA; SANTOS, CLÁUDIA REGINA DOS; CARMO, ALINE BORGES DO;Abstract The Environmental Impact Assessment (EIA) aims to analyze the environmental viability of projects, but exhibits problems that compromise its quality, such as the fragmented, technocratic and positivist vision. The prediction of environmental impacts can be improved using the ecosystem approach, considering the processes and the ecosystem services affected. The present work applied this approach in the expansion project of the Port of São Sebastião (São Paulo, Brazil), in which the EIA was judicially questioned, based on documental analysis and discussion by specialists. Unlike foreseen in the EIA, the analysis of oceanographic processes showed direct and indirect impacts on ecosystem services and benefits, irreversible and/or of great magnitude. The analysis also allowed an improvement to the comprehension not only on the effects on the environmental components and processes (hydrodynamics, sediment dynamics and biodiversity), but also on human well-being, evidencing the benefits of applying the ecosystem approach in the EIA.
Ambiente & Socie... arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2017License: CC BY NCData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/1809-4422asoc166v2022017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ambiente & Socie... arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2017License: CC BY NCData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/1809-4422asoc166v2022017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 BrazilPublisher:Elsevier BV Authors: Leite, Lucas G.; Ciotti, Aurea M.; Christofoletti, Ronaldo Adriano;pmid: 22738760
Trampling by human visitors to rocky shores is a known stressor on macroorganisms. However, the effects of trampling on rocky intertidal biofilm, a complex association of microorganisms of ecological importance in coastal communities, have not been quantified. We evaluated the impact of trampling frequency and intensity on total biomass of epilithic microalgae on intertidal rocky shores in the southeast of Brazil. There was a trend of increase in the variability of biomass of biofilm in function of intensity of trampling, but no significant effects emerged among trampling treatments. The low influence of trampling on biofilm might be a result of the small dimensions of the organisms coupled with their natural resilience and roughness of the substrate; the former preventing the removal of biofilm layers by shoes and facilitating their quick recovery. Our results provide insights for management and conservation of coastal ecosystems revealing a weaker impact of trampling on biofilm than that reported on macroorganisms.
Marine Environmental... arrow_drop_down Marine Environmental ResearchArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Federal de São Paulo (UNIFESP): Repositório InstitucionalArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2012.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Marine Environmental... arrow_drop_down Marine Environmental ResearchArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Federal de São Paulo (UNIFESP): Repositório InstitucionalArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2012.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, Australia, United Kingdom, Australia, GermanyPublisher:Wiley Publicly fundedMarion Gehlen; Philip W. Boyd; Philip W. Boyd; Áurea Maria Ciotti; Uta Passow; Haimanti Biswas; Catriona L. Hurd; Marcello Vichi; Jonathan N. Havenhand; David A. Hutchins; Sam Dupont; Max S Rintoul; Haruko Kurihara; Jorge M. Navarro; Göran E. Nilsson; Christina M. McGraw; Ulf Riebesell; Sinéad Collins; Katharina E. Fabricius; Hans-Otto Pörtner; Kunshan Gao; Jean-Pierre Gattuso;AbstractMarine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy‐making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process‐oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science‐based policy formulation.
OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 319 citations 319 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu