- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Ruddy Wattiez; Neha Sachdeva; Baptiste Leroy; Cyril Mascolo;pmid: 30081283
This study was conducted with the aim of embedding circular economies (waste recycling) with photosynthetic biorefineries, for production of commercially viable by-products. Since nitrogen source constitute the major input costs for commercial Arthrospira sp. production, the use of nitrogen rich wastewater for Arthrospira sp. cultivation could significantly reduce their production costs. This study evaluated the effects of high concentrations (8.5-120 mM) of alternative nitrogen sources (urea, ammonium and nitrite) on the biochemical, pigment and proteomic profile of Arthrospira sp., under batch and continuous conditions. Arthrospira sp. cells fed with urea were quantified with modified biochemical and proteomic profile compared to the nitrate fed cells. No inhibitory effect of urea was observed on the biomass even at 120 mM. Nitrite fed cells exhibited comparable biochemical and proteomic profiles as nitrate fed cells. These results clearly indicated at the possibility of using urea rich wastewater streams for profitable cultivation of Arthrospira sp.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Sachdeva, N; Giambarresi, G; Poughon, Laurent; Carlos Cabrera, J; Leroy, B; Lasseur, Christophe; Dussap, Claude-Gilles; Wattiez, R;pmid: 30041143
The ability of cyanobacterium Arthrospira sp. to assimilate waste nitrogen sources (ammonium and urea) makes it an important candidate for wastewater management. The aim of this work was to evaluate a cultivation approach based on continuous-transitional-feeding regime (nitrate-ammonium-nitrate) in a photobioreactor to assess the effects of ammonium salts on Arthrospira sp. PCC 8005 metabolism. Using a comprehensive biochemical, proteomic and stoichiometric profiling of biomass, this study demonstrated that the proposed cultivation approach could increase the proteins and pigments yields by 20-30%, compared to the respective yields obtained from wild-type Arthrospira sp. strain A light-energy-transfer model was used to predict the biomass and oxygen productivities of Arthrospira sp. cultivated under transitional-feeding regime. 95 ± 2% match was observed between the experimental and simulated productivities. This study thus opened new avenues for use of ammonium rich wastewater for commercial production of high value pigments, biofuel and bioplastics using Arthrospira sp.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Ruddy Wattiez; Neha Sachdeva; Baptiste Leroy; Cyril Mascolo;pmid: 30081283
This study was conducted with the aim of embedding circular economies (waste recycling) with photosynthetic biorefineries, for production of commercially viable by-products. Since nitrogen source constitute the major input costs for commercial Arthrospira sp. production, the use of nitrogen rich wastewater for Arthrospira sp. cultivation could significantly reduce their production costs. This study evaluated the effects of high concentrations (8.5-120 mM) of alternative nitrogen sources (urea, ammonium and nitrite) on the biochemical, pigment and proteomic profile of Arthrospira sp., under batch and continuous conditions. Arthrospira sp. cells fed with urea were quantified with modified biochemical and proteomic profile compared to the nitrate fed cells. No inhibitory effect of urea was observed on the biomass even at 120 mM. Nitrite fed cells exhibited comparable biochemical and proteomic profiles as nitrate fed cells. These results clearly indicated at the possibility of using urea rich wastewater streams for profitable cultivation of Arthrospira sp.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Sachdeva, N; Giambarresi, G; Poughon, Laurent; Carlos Cabrera, J; Leroy, B; Lasseur, Christophe; Dussap, Claude-Gilles; Wattiez, R;pmid: 30041143
The ability of cyanobacterium Arthrospira sp. to assimilate waste nitrogen sources (ammonium and urea) makes it an important candidate for wastewater management. The aim of this work was to evaluate a cultivation approach based on continuous-transitional-feeding regime (nitrate-ammonium-nitrate) in a photobioreactor to assess the effects of ammonium salts on Arthrospira sp. PCC 8005 metabolism. Using a comprehensive biochemical, proteomic and stoichiometric profiling of biomass, this study demonstrated that the proposed cultivation approach could increase the proteins and pigments yields by 20-30%, compared to the respective yields obtained from wild-type Arthrospira sp. strain A light-energy-transfer model was used to predict the biomass and oxygen productivities of Arthrospira sp. cultivated under transitional-feeding regime. 95 ± 2% match was observed between the experimental and simulated productivities. This study thus opened new avenues for use of ammonium rich wastewater for commercial production of high value pigments, biofuel and bioplastics using Arthrospira sp.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu