- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:MDPI AG Funded by:EC | LABEL 2020EC| LABEL 2020Antonella Senese; Anna Claudia Caspani; Lorenzo Lombardo; Veronica Manara; Guglielmina Adele Diolaiuti; Maurizio Maugeri;doi: 10.3390/su16051976
handle: 2434/1041189
In recent decades, climate change has demanded more and more attention. Consumers have the power to influence the carbon footprint of goods and services through their purchasing decisions, but to do this they need to learn more. To address this need, it is necessary to develop online questionnaires able to make people aware of which activities have a greater environmental impact in their daily lives. Focusing on this goal, we formulated two tools for quantifying an individual’s carbon footprint over a year. The innovativeness of these tools lies in being user-friendly and providing online open access to compilers, as well as using specific emission factors for the reference context. Specifically, we focused on the main emission sources: gas and electricity consumption, mobility, food, and waste. During these last years, the tools have been proposed to Italian students at different levels of education and to employees of Italian and international companies. The responses from 3260 users revealed an average annual direct carbon footprint per capita of about 5600 kg CO2-eq, which, integrated with the estimate of indirect emissions, provides an estimate in good agreement with the value provided by the Italian National Inventory of greenhouse gases. With the developed tools, people are able to observe which sectors have the greatest impact and consequently are stimulated to emit less by adopting more sustainable behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:MDPI AG Funded by:EC | LABEL 2020EC| LABEL 2020Antonella Senese; Anna Claudia Caspani; Lorenzo Lombardo; Veronica Manara; Guglielmina Adele Diolaiuti; Maurizio Maugeri;doi: 10.3390/su16051976
handle: 2434/1041189
In recent decades, climate change has demanded more and more attention. Consumers have the power to influence the carbon footprint of goods and services through their purchasing decisions, but to do this they need to learn more. To address this need, it is necessary to develop online questionnaires able to make people aware of which activities have a greater environmental impact in their daily lives. Focusing on this goal, we formulated two tools for quantifying an individual’s carbon footprint over a year. The innovativeness of these tools lies in being user-friendly and providing online open access to compilers, as well as using specific emission factors for the reference context. Specifically, we focused on the main emission sources: gas and electricity consumption, mobility, food, and waste. During these last years, the tools have been proposed to Italian students at different levels of education and to employees of Italian and international companies. The responses from 3260 users revealed an average annual direct carbon footprint per capita of about 5600 kg CO2-eq, which, integrated with the estimate of indirect emissions, provides an estimate in good agreement with the value provided by the Italian National Inventory of greenhouse gases. With the developed tools, people are able to observe which sectors have the greatest impact and consequently are stimulated to emit less by adopting more sustainable behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Soncini Andrea; Bocchiola Daniele; Bocchiola Daniele; Confortola Gabriele; Minora Umberto; Vuillermoz Elisa; Salerno Franco; Salerno Franco; Viviano Gaetano; Viviano Gaetano; Shrestha Dibas; Senese Antonella; Smiraglia Claudio; Diolaiuti Guglielmina; Diolaiuti Guglielmina;pmid: 27262982
handle: 20.500.14243/320407 , 2434/395617 , 11311/1013278
Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required.
Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Soncini Andrea; Bocchiola Daniele; Bocchiola Daniele; Confortola Gabriele; Minora Umberto; Vuillermoz Elisa; Salerno Franco; Salerno Franco; Viviano Gaetano; Viviano Gaetano; Shrestha Dibas; Senese Antonella; Smiraglia Claudio; Diolaiuti Guglielmina; Diolaiuti Guglielmina;pmid: 27262982
handle: 20.500.14243/320407 , 2434/395617 , 11311/1013278
Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required.
Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:MDPI AG Daniele Bocchiola; Francesco Chirico; Andrea Soncini; Roberto Sergio Azzoni; Guglielmina Adele Diolaiuti; Antonella Senese;doi: 10.3390/rs14010052
handle: 2434/911633 , 11311/1205590
We mapped flow velocity and calving rates of the iconic Perito Moreno Glacier (PMG), belonging to the Southern Patagonian Icefield (SPI) in the Argentinian Patagonia. We tracked PMG from 2001 to 2017, focusing mostly upon the latest images from 2016–2017. PMG delivers about ca. 106 m3 day−1 of ice in the Lago Argentino, and its front periodically reaches the Peninsula Magallanes. Therein, the PMG causes an ice-dam, clogging Brazo Rico channel, and lifting water level by about 10 m, until ice-dam failure, normally occurring in March. Here, we used 36 pairs of satellite images with a resolution of 10 m (SENTINEL2, visible, 9 pairs of images) and 15 m (LANDSAT imagery, panchromatic, 27 pairs of images) to calculate surface velocity (VS). We used Orientation Correlation technique, implemented via the ImGRAFT® TemplateMatch tool. Calving rates were then calculated with two methods, namely, (i) M1, by ice flow through the glacier front, and (ii) M2, by ice flow at 7.5 km upstream of the front minus ablation losses. Surface velocity ranged from about 4 m day−1 in the accumulation area to about 2 m day−1 in the calving front, but it is variable seasonally with maxima in the summer (December–January–February). Calving rate (CRM) ranges from 7.72 × 105 ± 32% to 8.76 × 105 ± 31% m3 day−1, in line with recent studies, also with maxima in the summer. We found slightly lower flow velocity and calving rates than previously published values, but our estimates cover a different period, and a generally large uncertainty in flow assessment suggests a recent overall stability of the glacier.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/14/1/52/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/14/1/52/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:MDPI AG Daniele Bocchiola; Francesco Chirico; Andrea Soncini; Roberto Sergio Azzoni; Guglielmina Adele Diolaiuti; Antonella Senese;doi: 10.3390/rs14010052
handle: 2434/911633 , 11311/1205590
We mapped flow velocity and calving rates of the iconic Perito Moreno Glacier (PMG), belonging to the Southern Patagonian Icefield (SPI) in the Argentinian Patagonia. We tracked PMG from 2001 to 2017, focusing mostly upon the latest images from 2016–2017. PMG delivers about ca. 106 m3 day−1 of ice in the Lago Argentino, and its front periodically reaches the Peninsula Magallanes. Therein, the PMG causes an ice-dam, clogging Brazo Rico channel, and lifting water level by about 10 m, until ice-dam failure, normally occurring in March. Here, we used 36 pairs of satellite images with a resolution of 10 m (SENTINEL2, visible, 9 pairs of images) and 15 m (LANDSAT imagery, panchromatic, 27 pairs of images) to calculate surface velocity (VS). We used Orientation Correlation technique, implemented via the ImGRAFT® TemplateMatch tool. Calving rates were then calculated with two methods, namely, (i) M1, by ice flow through the glacier front, and (ii) M2, by ice flow at 7.5 km upstream of the front minus ablation losses. Surface velocity ranged from about 4 m day−1 in the accumulation area to about 2 m day−1 in the calving front, but it is variable seasonally with maxima in the summer (December–January–February). Calving rate (CRM) ranges from 7.72 × 105 ± 32% to 8.76 × 105 ± 31% m3 day−1, in line with recent studies, also with maxima in the summer. We found slightly lower flow velocity and calving rates than previously published values, but our estimates cover a different period, and a generally large uncertainty in flow assessment suggests a recent overall stability of the glacier.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/14/1/52/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/14/1/52/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 ItalyPublisher:MDPI AG Antonella Senese; Manuela Pelfini; Davide Maragno; Irene Maria Bollati; Davide Fugazza; Luca Vaghi; Maurizio Federici; Luca Grimaldi; Piera Belotti; Paola Lauri; Carla Ferliga; Leonardo La Rocca; Guglielmina Adele Diolaiuti;doi: 10.3390/su15064979
This study analyzed the challenges and benefits of the identification and promotion of a long-distance cycleway in high mountain areas with the aim of promoting Alpine eco- and geo-tourism. We also investigated the role of e-biking in discovering local geodiversity and geoheritage in a sustainable way. In particular, we focused on the path from Bormio to the Forni Glacier (Upper Valtellina, Italy), analyzed within the framework of the “E-bike” Interreg project. We performed a detailed analysis to select the points of environmental–geological interest (POIs), with a focus on geoheritage sites to increase the knowledge of the natural heritage of the area. Since these sites are widespread in the study area, within the frame of the “E-bike” project, we selected only the most exemplary ones, covering a wide spectrum of attractions, from a moving geosite (i.e., landslide) to a paradigmatic example of the effects of climate change (glacier). The “E-bike” path represents in its entirety a great opportunity to visit mountain and high-mountain landscapes, even for inexperienced mountain bikers, and to enjoy places rich in naturalistic and cultural values. Our interdisciplinary approach allows visitors to identify the sites of interest and export the structure of the project in different environmental and human contexts.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 ItalyPublisher:MDPI AG Antonella Senese; Manuela Pelfini; Davide Maragno; Irene Maria Bollati; Davide Fugazza; Luca Vaghi; Maurizio Federici; Luca Grimaldi; Piera Belotti; Paola Lauri; Carla Ferliga; Leonardo La Rocca; Guglielmina Adele Diolaiuti;doi: 10.3390/su15064979
This study analyzed the challenges and benefits of the identification and promotion of a long-distance cycleway in high mountain areas with the aim of promoting Alpine eco- and geo-tourism. We also investigated the role of e-biking in discovering local geodiversity and geoheritage in a sustainable way. In particular, we focused on the path from Bormio to the Forni Glacier (Upper Valtellina, Italy), analyzed within the framework of the “E-bike” Interreg project. We performed a detailed analysis to select the points of environmental–geological interest (POIs), with a focus on geoheritage sites to increase the knowledge of the natural heritage of the area. Since these sites are widespread in the study area, within the frame of the “E-bike” project, we selected only the most exemplary ones, covering a wide spectrum of attractions, from a moving geosite (i.e., landslide) to a paradigmatic example of the effects of climate change (glacier). The “E-bike” path represents in its entirety a great opportunity to visit mountain and high-mountain landscapes, even for inexperienced mountain bikers, and to enjoy places rich in naturalistic and cultural values. Our interdisciplinary approach allows visitors to identify the sites of interest and export the structure of the project in different environmental and human contexts.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Antonella Senese; Massimo Pecci; Roberto Ambrosini; Guglielmina Adele Diolaiuti;doi: 10.3390/su15087017
The plastic footprint is defined as a science-based tool for quantifying the amount of plastic (in kg) one contributes to the world’s plastic waste (from plastic wraps to anything containing plastics, such as clothes). Making consumers aware of their total plastic footprint and of how it is divided among their various daily life activities can promote concrete eco-sustainable actions aimed at reducing it and consequently plastic consumption. To this aim, we developed a free online plastic footprint calculator for making users aware of how much plastic they introduce into the environment through individual consumption, from food to clothing or leisure. In this tool, we also considered the consumption of plastics during mountain activities as it leads to the production of specific plastic waste. We tested the beta version of this tool on a small sample of users, including students, living in the mountains. Our results show that the sector with the greatest impact is food consumption (72.8%, mainly due to plastic drink bottles), followed by mountain activities (17.4%), a sector that was investigated in more detail (i.e., with more questions) than food consumption. Considering only mountain activities, synthetic fleeces are the most widely used and incorrectly managed items (34.7%), followed by shoes for mountain running or hiking (20.8%). We hope this tool will contribute to more aware use and management of plastic items during mountain activities and daily life and help reduce the distribution of plastics into the environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/8/7017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15087017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/8/7017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15087017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Antonella Senese; Massimo Pecci; Roberto Ambrosini; Guglielmina Adele Diolaiuti;doi: 10.3390/su15087017
The plastic footprint is defined as a science-based tool for quantifying the amount of plastic (in kg) one contributes to the world’s plastic waste (from plastic wraps to anything containing plastics, such as clothes). Making consumers aware of their total plastic footprint and of how it is divided among their various daily life activities can promote concrete eco-sustainable actions aimed at reducing it and consequently plastic consumption. To this aim, we developed a free online plastic footprint calculator for making users aware of how much plastic they introduce into the environment through individual consumption, from food to clothing or leisure. In this tool, we also considered the consumption of plastics during mountain activities as it leads to the production of specific plastic waste. We tested the beta version of this tool on a small sample of users, including students, living in the mountains. Our results show that the sector with the greatest impact is food consumption (72.8%, mainly due to plastic drink bottles), followed by mountain activities (17.4%), a sector that was investigated in more detail (i.e., with more questions) than food consumption. Considering only mountain activities, synthetic fleeces are the most widely used and incorrectly managed items (34.7%), followed by shoes for mountain running or hiking (20.8%). We hope this tool will contribute to more aware use and management of plastic items during mountain activities and daily life and help reduce the distribution of plastics into the environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/8/7017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15087017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/8/7017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15087017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Bocchiola, Daniele; Soncini, Andrea; Senese, Antonella; Diolaiuti, Guglielmina;doi: 10.3390/cli6030057
handle: 2434/636543 , 11311/1086927
We used the Poly-Hydro model to assess the main hydrological components of the snow-ice melt driven Maipo River in Chile, and glaciers’ retreat under climate change therein until 2100. We used field data of ice ablation, ice thickness, weather and hydrological data, and precipitation from TRMM. Snow cover and temperature were taken from MODIS. We forced the model using weather projections until 2100 from three GCMs from the IPCC AR5, under three different radiative concentration pathways (RCPs 2.6, 4.5, 8.5). We investigated trends of precipitation, temperature, and hydrology until 2100 in the projection period (PR, 2014–2100) and the whole period (CM 1980–2100, composite), against historical trends in control period (CP, 1980–2013). We found potentially increasing temperature until 2100, except for Spring (OND). In the PR period, yearly flow decreases significantly under RCP85, on average −0.25 m3·s−1·year−1, and down to −0.48 m3·s−1·year−1, i.e., −0.4% year−1 against CP yearly average (120 m3 s−1). In the long run (CM) significant flow decrease would, occur under almost all scenarios, confirming persistence of a historical decrease, down to −0.39 m3·s−1·year−1 during CM. Large flow decreases are expected under all scenarios in Summer (JFM) during PR, down to −1.6 m3·s−1·year−1, or −1% year−1 against CP for RCP8.5, due to increase of evapotranspiration in response to higher temperatures. Fall (AMJ) flows would be mostly unchanged, while Winter (JAS) flows would be projected to increase significantly, up to 0.7 m3·s−1·year−1 during 2014–2100, i.e., +0.9% year−1 vs. CP under RCP8.5, due to large melting therein. Spring (OND) flows would decrease largely under RCP8.5, down to −0.67 m3 s−1·year−1, or −0.4% year−1 vs. CP, again due to evapotranspiration. Glacier down wasting is projected to speed up, and increasingly so with RCPs. Until 2100 ice loss would range from −13% to −49% (−9%, and −39% at 2050) of the estimated volume at 2012, which changed by −24% to −56% (−21%, and −39% at 2050) vs. ice volume in 1982, thus with rapider depletion in the first half of the century. Policy makers will have to cope with modified hydrological cycle in the Maipo River, and greatly decreasing ice cover in the area.
Climate arrow_drop_down ClimateOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2225-1154/6/3/57/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli6030057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climate arrow_drop_down ClimateOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2225-1154/6/3/57/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli6030057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Bocchiola, Daniele; Soncini, Andrea; Senese, Antonella; Diolaiuti, Guglielmina;doi: 10.3390/cli6030057
handle: 2434/636543 , 11311/1086927
We used the Poly-Hydro model to assess the main hydrological components of the snow-ice melt driven Maipo River in Chile, and glaciers’ retreat under climate change therein until 2100. We used field data of ice ablation, ice thickness, weather and hydrological data, and precipitation from TRMM. Snow cover and temperature were taken from MODIS. We forced the model using weather projections until 2100 from three GCMs from the IPCC AR5, under three different radiative concentration pathways (RCPs 2.6, 4.5, 8.5). We investigated trends of precipitation, temperature, and hydrology until 2100 in the projection period (PR, 2014–2100) and the whole period (CM 1980–2100, composite), against historical trends in control period (CP, 1980–2013). We found potentially increasing temperature until 2100, except for Spring (OND). In the PR period, yearly flow decreases significantly under RCP85, on average −0.25 m3·s−1·year−1, and down to −0.48 m3·s−1·year−1, i.e., −0.4% year−1 against CP yearly average (120 m3 s−1). In the long run (CM) significant flow decrease would, occur under almost all scenarios, confirming persistence of a historical decrease, down to −0.39 m3·s−1·year−1 during CM. Large flow decreases are expected under all scenarios in Summer (JFM) during PR, down to −1.6 m3·s−1·year−1, or −1% year−1 against CP for RCP8.5, due to increase of evapotranspiration in response to higher temperatures. Fall (AMJ) flows would be mostly unchanged, while Winter (JAS) flows would be projected to increase significantly, up to 0.7 m3·s−1·year−1 during 2014–2100, i.e., +0.9% year−1 vs. CP under RCP8.5, due to large melting therein. Spring (OND) flows would decrease largely under RCP8.5, down to −0.67 m3 s−1·year−1, or −0.4% year−1 vs. CP, again due to evapotranspiration. Glacier down wasting is projected to speed up, and increasingly so with RCPs. Until 2100 ice loss would range from −13% to −49% (−9%, and −39% at 2050) of the estimated volume at 2012, which changed by −24% to −56% (−21%, and −39% at 2050) vs. ice volume in 1982, thus with rapider depletion in the first half of the century. Policy makers will have to cope with modified hydrological cycle in the Maipo River, and greatly decreasing ice cover in the area.
Climate arrow_drop_down ClimateOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2225-1154/6/3/57/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli6030057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climate arrow_drop_down ClimateOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2225-1154/6/3/57/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli6030057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:MDPI AG Funded by:EC | LABEL 2020EC| LABEL 2020Antonella Senese; Anna Claudia Caspani; Lorenzo Lombardo; Veronica Manara; Guglielmina Adele Diolaiuti; Maurizio Maugeri;doi: 10.3390/su16051976
handle: 2434/1041189
In recent decades, climate change has demanded more and more attention. Consumers have the power to influence the carbon footprint of goods and services through their purchasing decisions, but to do this they need to learn more. To address this need, it is necessary to develop online questionnaires able to make people aware of which activities have a greater environmental impact in their daily lives. Focusing on this goal, we formulated two tools for quantifying an individual’s carbon footprint over a year. The innovativeness of these tools lies in being user-friendly and providing online open access to compilers, as well as using specific emission factors for the reference context. Specifically, we focused on the main emission sources: gas and electricity consumption, mobility, food, and waste. During these last years, the tools have been proposed to Italian students at different levels of education and to employees of Italian and international companies. The responses from 3260 users revealed an average annual direct carbon footprint per capita of about 5600 kg CO2-eq, which, integrated with the estimate of indirect emissions, provides an estimate in good agreement with the value provided by the Italian National Inventory of greenhouse gases. With the developed tools, people are able to observe which sectors have the greatest impact and consequently are stimulated to emit less by adopting more sustainable behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:MDPI AG Funded by:EC | LABEL 2020EC| LABEL 2020Antonella Senese; Anna Claudia Caspani; Lorenzo Lombardo; Veronica Manara; Guglielmina Adele Diolaiuti; Maurizio Maugeri;doi: 10.3390/su16051976
handle: 2434/1041189
In recent decades, climate change has demanded more and more attention. Consumers have the power to influence the carbon footprint of goods and services through their purchasing decisions, but to do this they need to learn more. To address this need, it is necessary to develop online questionnaires able to make people aware of which activities have a greater environmental impact in their daily lives. Focusing on this goal, we formulated two tools for quantifying an individual’s carbon footprint over a year. The innovativeness of these tools lies in being user-friendly and providing online open access to compilers, as well as using specific emission factors for the reference context. Specifically, we focused on the main emission sources: gas and electricity consumption, mobility, food, and waste. During these last years, the tools have been proposed to Italian students at different levels of education and to employees of Italian and international companies. The responses from 3260 users revealed an average annual direct carbon footprint per capita of about 5600 kg CO2-eq, which, integrated with the estimate of indirect emissions, provides an estimate in good agreement with the value provided by the Italian National Inventory of greenhouse gases. With the developed tools, people are able to observe which sectors have the greatest impact and consequently are stimulated to emit less by adopting more sustainable behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Soncini Andrea; Bocchiola Daniele; Bocchiola Daniele; Confortola Gabriele; Minora Umberto; Vuillermoz Elisa; Salerno Franco; Salerno Franco; Viviano Gaetano; Viviano Gaetano; Shrestha Dibas; Senese Antonella; Smiraglia Claudio; Diolaiuti Guglielmina; Diolaiuti Guglielmina;pmid: 27262982
handle: 20.500.14243/320407 , 2434/395617 , 11311/1013278
Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required.
Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Soncini Andrea; Bocchiola Daniele; Bocchiola Daniele; Confortola Gabriele; Minora Umberto; Vuillermoz Elisa; Salerno Franco; Salerno Franco; Viviano Gaetano; Viviano Gaetano; Shrestha Dibas; Senese Antonella; Smiraglia Claudio; Diolaiuti Guglielmina; Diolaiuti Guglielmina;pmid: 27262982
handle: 20.500.14243/320407 , 2434/395617 , 11311/1013278
Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required.
Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:MDPI AG Daniele Bocchiola; Francesco Chirico; Andrea Soncini; Roberto Sergio Azzoni; Guglielmina Adele Diolaiuti; Antonella Senese;doi: 10.3390/rs14010052
handle: 2434/911633 , 11311/1205590
We mapped flow velocity and calving rates of the iconic Perito Moreno Glacier (PMG), belonging to the Southern Patagonian Icefield (SPI) in the Argentinian Patagonia. We tracked PMG from 2001 to 2017, focusing mostly upon the latest images from 2016–2017. PMG delivers about ca. 106 m3 day−1 of ice in the Lago Argentino, and its front periodically reaches the Peninsula Magallanes. Therein, the PMG causes an ice-dam, clogging Brazo Rico channel, and lifting water level by about 10 m, until ice-dam failure, normally occurring in March. Here, we used 36 pairs of satellite images with a resolution of 10 m (SENTINEL2, visible, 9 pairs of images) and 15 m (LANDSAT imagery, panchromatic, 27 pairs of images) to calculate surface velocity (VS). We used Orientation Correlation technique, implemented via the ImGRAFT® TemplateMatch tool. Calving rates were then calculated with two methods, namely, (i) M1, by ice flow through the glacier front, and (ii) M2, by ice flow at 7.5 km upstream of the front minus ablation losses. Surface velocity ranged from about 4 m day−1 in the accumulation area to about 2 m day−1 in the calving front, but it is variable seasonally with maxima in the summer (December–January–February). Calving rate (CRM) ranges from 7.72 × 105 ± 32% to 8.76 × 105 ± 31% m3 day−1, in line with recent studies, also with maxima in the summer. We found slightly lower flow velocity and calving rates than previously published values, but our estimates cover a different period, and a generally large uncertainty in flow assessment suggests a recent overall stability of the glacier.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/14/1/52/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/14/1/52/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:MDPI AG Daniele Bocchiola; Francesco Chirico; Andrea Soncini; Roberto Sergio Azzoni; Guglielmina Adele Diolaiuti; Antonella Senese;doi: 10.3390/rs14010052
handle: 2434/911633 , 11311/1205590
We mapped flow velocity and calving rates of the iconic Perito Moreno Glacier (PMG), belonging to the Southern Patagonian Icefield (SPI) in the Argentinian Patagonia. We tracked PMG from 2001 to 2017, focusing mostly upon the latest images from 2016–2017. PMG delivers about ca. 106 m3 day−1 of ice in the Lago Argentino, and its front periodically reaches the Peninsula Magallanes. Therein, the PMG causes an ice-dam, clogging Brazo Rico channel, and lifting water level by about 10 m, until ice-dam failure, normally occurring in March. Here, we used 36 pairs of satellite images with a resolution of 10 m (SENTINEL2, visible, 9 pairs of images) and 15 m (LANDSAT imagery, panchromatic, 27 pairs of images) to calculate surface velocity (VS). We used Orientation Correlation technique, implemented via the ImGRAFT® TemplateMatch tool. Calving rates were then calculated with two methods, namely, (i) M1, by ice flow through the glacier front, and (ii) M2, by ice flow at 7.5 km upstream of the front minus ablation losses. Surface velocity ranged from about 4 m day−1 in the accumulation area to about 2 m day−1 in the calving front, but it is variable seasonally with maxima in the summer (December–January–February). Calving rate (CRM) ranges from 7.72 × 105 ± 32% to 8.76 × 105 ± 31% m3 day−1, in line with recent studies, also with maxima in the summer. We found slightly lower flow velocity and calving rates than previously published values, but our estimates cover a different period, and a generally large uncertainty in flow assessment suggests a recent overall stability of the glacier.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/14/1/52/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/14/1/52/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 ItalyPublisher:MDPI AG Antonella Senese; Manuela Pelfini; Davide Maragno; Irene Maria Bollati; Davide Fugazza; Luca Vaghi; Maurizio Federici; Luca Grimaldi; Piera Belotti; Paola Lauri; Carla Ferliga; Leonardo La Rocca; Guglielmina Adele Diolaiuti;doi: 10.3390/su15064979
This study analyzed the challenges and benefits of the identification and promotion of a long-distance cycleway in high mountain areas with the aim of promoting Alpine eco- and geo-tourism. We also investigated the role of e-biking in discovering local geodiversity and geoheritage in a sustainable way. In particular, we focused on the path from Bormio to the Forni Glacier (Upper Valtellina, Italy), analyzed within the framework of the “E-bike” Interreg project. We performed a detailed analysis to select the points of environmental–geological interest (POIs), with a focus on geoheritage sites to increase the knowledge of the natural heritage of the area. Since these sites are widespread in the study area, within the frame of the “E-bike” project, we selected only the most exemplary ones, covering a wide spectrum of attractions, from a moving geosite (i.e., landslide) to a paradigmatic example of the effects of climate change (glacier). The “E-bike” path represents in its entirety a great opportunity to visit mountain and high-mountain landscapes, even for inexperienced mountain bikers, and to enjoy places rich in naturalistic and cultural values. Our interdisciplinary approach allows visitors to identify the sites of interest and export the structure of the project in different environmental and human contexts.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 ItalyPublisher:MDPI AG Antonella Senese; Manuela Pelfini; Davide Maragno; Irene Maria Bollati; Davide Fugazza; Luca Vaghi; Maurizio Federici; Luca Grimaldi; Piera Belotti; Paola Lauri; Carla Ferliga; Leonardo La Rocca; Guglielmina Adele Diolaiuti;doi: 10.3390/su15064979
This study analyzed the challenges and benefits of the identification and promotion of a long-distance cycleway in high mountain areas with the aim of promoting Alpine eco- and geo-tourism. We also investigated the role of e-biking in discovering local geodiversity and geoheritage in a sustainable way. In particular, we focused on the path from Bormio to the Forni Glacier (Upper Valtellina, Italy), analyzed within the framework of the “E-bike” Interreg project. We performed a detailed analysis to select the points of environmental–geological interest (POIs), with a focus on geoheritage sites to increase the knowledge of the natural heritage of the area. Since these sites are widespread in the study area, within the frame of the “E-bike” project, we selected only the most exemplary ones, covering a wide spectrum of attractions, from a moving geosite (i.e., landslide) to a paradigmatic example of the effects of climate change (glacier). The “E-bike” path represents in its entirety a great opportunity to visit mountain and high-mountain landscapes, even for inexperienced mountain bikers, and to enjoy places rich in naturalistic and cultural values. Our interdisciplinary approach allows visitors to identify the sites of interest and export the structure of the project in different environmental and human contexts.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Antonella Senese; Massimo Pecci; Roberto Ambrosini; Guglielmina Adele Diolaiuti;doi: 10.3390/su15087017
The plastic footprint is defined as a science-based tool for quantifying the amount of plastic (in kg) one contributes to the world’s plastic waste (from plastic wraps to anything containing plastics, such as clothes). Making consumers aware of their total plastic footprint and of how it is divided among their various daily life activities can promote concrete eco-sustainable actions aimed at reducing it and consequently plastic consumption. To this aim, we developed a free online plastic footprint calculator for making users aware of how much plastic they introduce into the environment through individual consumption, from food to clothing or leisure. In this tool, we also considered the consumption of plastics during mountain activities as it leads to the production of specific plastic waste. We tested the beta version of this tool on a small sample of users, including students, living in the mountains. Our results show that the sector with the greatest impact is food consumption (72.8%, mainly due to plastic drink bottles), followed by mountain activities (17.4%), a sector that was investigated in more detail (i.e., with more questions) than food consumption. Considering only mountain activities, synthetic fleeces are the most widely used and incorrectly managed items (34.7%), followed by shoes for mountain running or hiking (20.8%). We hope this tool will contribute to more aware use and management of plastic items during mountain activities and daily life and help reduce the distribution of plastics into the environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/8/7017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15087017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/8/7017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15087017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Antonella Senese; Massimo Pecci; Roberto Ambrosini; Guglielmina Adele Diolaiuti;doi: 10.3390/su15087017
The plastic footprint is defined as a science-based tool for quantifying the amount of plastic (in kg) one contributes to the world’s plastic waste (from plastic wraps to anything containing plastics, such as clothes). Making consumers aware of their total plastic footprint and of how it is divided among their various daily life activities can promote concrete eco-sustainable actions aimed at reducing it and consequently plastic consumption. To this aim, we developed a free online plastic footprint calculator for making users aware of how much plastic they introduce into the environment through individual consumption, from food to clothing or leisure. In this tool, we also considered the consumption of plastics during mountain activities as it leads to the production of specific plastic waste. We tested the beta version of this tool on a small sample of users, including students, living in the mountains. Our results show that the sector with the greatest impact is food consumption (72.8%, mainly due to plastic drink bottles), followed by mountain activities (17.4%), a sector that was investigated in more detail (i.e., with more questions) than food consumption. Considering only mountain activities, synthetic fleeces are the most widely used and incorrectly managed items (34.7%), followed by shoes for mountain running or hiking (20.8%). We hope this tool will contribute to more aware use and management of plastic items during mountain activities and daily life and help reduce the distribution of plastics into the environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/8/7017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15087017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/8/7017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15087017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Bocchiola, Daniele; Soncini, Andrea; Senese, Antonella; Diolaiuti, Guglielmina;doi: 10.3390/cli6030057
handle: 2434/636543 , 11311/1086927
We used the Poly-Hydro model to assess the main hydrological components of the snow-ice melt driven Maipo River in Chile, and glaciers’ retreat under climate change therein until 2100. We used field data of ice ablation, ice thickness, weather and hydrological data, and precipitation from TRMM. Snow cover and temperature were taken from MODIS. We forced the model using weather projections until 2100 from three GCMs from the IPCC AR5, under three different radiative concentration pathways (RCPs 2.6, 4.5, 8.5). We investigated trends of precipitation, temperature, and hydrology until 2100 in the projection period (PR, 2014–2100) and the whole period (CM 1980–2100, composite), against historical trends in control period (CP, 1980–2013). We found potentially increasing temperature until 2100, except for Spring (OND). In the PR period, yearly flow decreases significantly under RCP85, on average −0.25 m3·s−1·year−1, and down to −0.48 m3·s−1·year−1, i.e., −0.4% year−1 against CP yearly average (120 m3 s−1). In the long run (CM) significant flow decrease would, occur under almost all scenarios, confirming persistence of a historical decrease, down to −0.39 m3·s−1·year−1 during CM. Large flow decreases are expected under all scenarios in Summer (JFM) during PR, down to −1.6 m3·s−1·year−1, or −1% year−1 against CP for RCP8.5, due to increase of evapotranspiration in response to higher temperatures. Fall (AMJ) flows would be mostly unchanged, while Winter (JAS) flows would be projected to increase significantly, up to 0.7 m3·s−1·year−1 during 2014–2100, i.e., +0.9% year−1 vs. CP under RCP8.5, due to large melting therein. Spring (OND) flows would decrease largely under RCP8.5, down to −0.67 m3 s−1·year−1, or −0.4% year−1 vs. CP, again due to evapotranspiration. Glacier down wasting is projected to speed up, and increasingly so with RCPs. Until 2100 ice loss would range from −13% to −49% (−9%, and −39% at 2050) of the estimated volume at 2012, which changed by −24% to −56% (−21%, and −39% at 2050) vs. ice volume in 1982, thus with rapider depletion in the first half of the century. Policy makers will have to cope with modified hydrological cycle in the Maipo River, and greatly decreasing ice cover in the area.
Climate arrow_drop_down ClimateOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2225-1154/6/3/57/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli6030057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climate arrow_drop_down ClimateOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2225-1154/6/3/57/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli6030057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Bocchiola, Daniele; Soncini, Andrea; Senese, Antonella; Diolaiuti, Guglielmina;doi: 10.3390/cli6030057
handle: 2434/636543 , 11311/1086927
We used the Poly-Hydro model to assess the main hydrological components of the snow-ice melt driven Maipo River in Chile, and glaciers’ retreat under climate change therein until 2100. We used field data of ice ablation, ice thickness, weather and hydrological data, and precipitation from TRMM. Snow cover and temperature were taken from MODIS. We forced the model using weather projections until 2100 from three GCMs from the IPCC AR5, under three different radiative concentration pathways (RCPs 2.6, 4.5, 8.5). We investigated trends of precipitation, temperature, and hydrology until 2100 in the projection period (PR, 2014–2100) and the whole period (CM 1980–2100, composite), against historical trends in control period (CP, 1980–2013). We found potentially increasing temperature until 2100, except for Spring (OND). In the PR period, yearly flow decreases significantly under RCP85, on average −0.25 m3·s−1·year−1, and down to −0.48 m3·s−1·year−1, i.e., −0.4% year−1 against CP yearly average (120 m3 s−1). In the long run (CM) significant flow decrease would, occur under almost all scenarios, confirming persistence of a historical decrease, down to −0.39 m3·s−1·year−1 during CM. Large flow decreases are expected under all scenarios in Summer (JFM) during PR, down to −1.6 m3·s−1·year−1, or −1% year−1 against CP for RCP8.5, due to increase of evapotranspiration in response to higher temperatures. Fall (AMJ) flows would be mostly unchanged, while Winter (JAS) flows would be projected to increase significantly, up to 0.7 m3·s−1·year−1 during 2014–2100, i.e., +0.9% year−1 vs. CP under RCP8.5, due to large melting therein. Spring (OND) flows would decrease largely under RCP8.5, down to −0.67 m3 s−1·year−1, or −0.4% year−1 vs. CP, again due to evapotranspiration. Glacier down wasting is projected to speed up, and increasingly so with RCPs. Until 2100 ice loss would range from −13% to −49% (−9%, and −39% at 2050) of the estimated volume at 2012, which changed by −24% to −56% (−21%, and −39% at 2050) vs. ice volume in 1982, thus with rapider depletion in the first half of the century. Policy makers will have to cope with modified hydrological cycle in the Maipo River, and greatly decreasing ice cover in the area.
Climate arrow_drop_down ClimateOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2225-1154/6/3/57/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli6030057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climate arrow_drop_down ClimateOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2225-1154/6/3/57/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli6030057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu