- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract This study proposes a use of Data Envelopment Analysis (DEA) for environmental assessment. All organizations in private and public sectors produce not only desirable (good) but also undesirable (bad) outputs as a result of their economic activities. The proposed use of DEA determines the level of unified (operational and environmental) efficiency of all the organizations. A contribution of this study is that it explores how to measure not only RTS (Returns to Scale) on desirable outputs but also a new concept regarding “DTS: Damages to Scale” (corresponding to RTS for undesirable outputs). This study discusses how to measure RTS under natural disposability and DTS under managerial disposability by DEA. The measurement of RTS and DTS is formulated by incorporating “Strong Complementary Slackness Conditions (SCSCs)”. As a result, this study can handle an occurrence of multiple reference sets and multiple projections in the RTS/DTS measurement. The incorporation of SCSCs makes it possible both to restrict DEA multipliers in a specific range without any prior information and to identify all possible efficient organizations as a reference set. Using the unique capabilities of SCSCs, this study discusses the use of DEA environmental assessment by exploring how to classify the type of RTS/DTS with SCSCs. Such analytical capabilities are essential, but not previously explored in DEA environmental assessment for energy industries. As an illustrative example, this study applies the proposed approach for the performance evaluation of Japanese manufacturing industries. This study finds that these firms need to introduce technology innovation to reduce an amount of greenhouse gases and wastes. The empirical result confirms the importance of measuring RTS/DTS in DEA environmental assessment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract This study proposes a use of Data Envelopment Analysis (DEA) for environmental assessment. All organizations in private and public sectors produce not only desirable (good) but also undesirable (bad) outputs as a result of their economic activities. The proposed use of DEA determines the level of unified (operational and environmental) efficiency of all the organizations. A contribution of this study is that it explores how to measure not only RTS (Returns to Scale) on desirable outputs but also a new concept regarding “DTS: Damages to Scale” (corresponding to RTS for undesirable outputs). This study discusses how to measure RTS under natural disposability and DTS under managerial disposability by DEA. The measurement of RTS and DTS is formulated by incorporating “Strong Complementary Slackness Conditions (SCSCs)”. As a result, this study can handle an occurrence of multiple reference sets and multiple projections in the RTS/DTS measurement. The incorporation of SCSCs makes it possible both to restrict DEA multipliers in a specific range without any prior information and to identify all possible efficient organizations as a reference set. Using the unique capabilities of SCSCs, this study discusses the use of DEA environmental assessment by exploring how to classify the type of RTS/DTS with SCSCs. Such analytical capabilities are essential, but not previously explored in DEA environmental assessment for energy industries. As an illustrative example, this study applies the proposed approach for the performance evaluation of Japanese manufacturing industries. This study finds that these firms need to introduce technology innovation to reduce an amount of greenhouse gases and wastes. The empirical result confirms the importance of measuring RTS/DTS in DEA environmental assessment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Mika Goto; Toshiyuki Sueyoshi;Abstract This study discusses a combined use of DEA (Data Environment Analysis) and DEA–DA (Discriminant Analysis) to determine the efficiency-based rank of energy firms. This type of performance evaluation is important because we often have a difficulty in accessing a large sample on energy firms to derive reliable empirical results. The proposed approach is useful in dealing with such a limited number of energy firms, often found in previous DEA studies on energy industries in the world. The proposed approach uses DEA to classify energy firms into efficient and inefficient groups based upon their efficiency scores. Then, it utilizes DEA–DA to assess their efficiency scores and ranks. In this stage, we can find an adjusted efficiency score for each energy firm. The proposed approach provides us with the following analytical capabilities, all of which cannot be found in a conventional use of DEA in assessing energy firms. First, the proposed DEA approach can avoid zero in all multipliers on efficient energy firms by incorporating SCSC (Strong Complementary Slackness Condition) so that it can handle an occurrence of multiple reference sets and multiple projections. The DEA result classifies all energy firms into efficient and inefficient groups. Second, DEA–DA, applied to the two groups, evaluates all energy firms by an industry-wide evaluation, not depending upon a limited number of efficient energy firms in a reference set, as found in a conventional use of DEA. The analytical capability can reduce the number of efficient energy firms. Third, the proposed approach can provide their efficiency-based ranking scores. Finally, we can conduct a rank sum test based upon their ranking scores to obtain a statistical inference. As an application, this study uses the proposed approach to examine the performance of Japanese electric power industry. We find two economic implications. One of the two implications is that no major change has occurred in the operational performance of Japanese electric power industry because of Japanese sluggish economy from 2005 to 2009. The other implication indicates that there are strategic differences in the operation of Japanese electric power firms after the liberalization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Mika Goto; Toshiyuki Sueyoshi;Abstract This study discusses a combined use of DEA (Data Environment Analysis) and DEA–DA (Discriminant Analysis) to determine the efficiency-based rank of energy firms. This type of performance evaluation is important because we often have a difficulty in accessing a large sample on energy firms to derive reliable empirical results. The proposed approach is useful in dealing with such a limited number of energy firms, often found in previous DEA studies on energy industries in the world. The proposed approach uses DEA to classify energy firms into efficient and inefficient groups based upon their efficiency scores. Then, it utilizes DEA–DA to assess their efficiency scores and ranks. In this stage, we can find an adjusted efficiency score for each energy firm. The proposed approach provides us with the following analytical capabilities, all of which cannot be found in a conventional use of DEA in assessing energy firms. First, the proposed DEA approach can avoid zero in all multipliers on efficient energy firms by incorporating SCSC (Strong Complementary Slackness Condition) so that it can handle an occurrence of multiple reference sets and multiple projections. The DEA result classifies all energy firms into efficient and inefficient groups. Second, DEA–DA, applied to the two groups, evaluates all energy firms by an industry-wide evaluation, not depending upon a limited number of efficient energy firms in a reference set, as found in a conventional use of DEA. The analytical capability can reduce the number of efficient energy firms. Third, the proposed approach can provide their efficiency-based ranking scores. Finally, we can conduct a rank sum test based upon their ranking scores to obtain a statistical inference. As an application, this study uses the proposed approach to examine the performance of Japanese electric power industry. We find two economic implications. One of the two implications is that no major change has occurred in the operational performance of Japanese electric power industry because of Japanese sluggish economy from 2005 to 2009. The other implication indicates that there are strategic differences in the operation of Japanese electric power firms after the liberalization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 JapanPublisher:Elsevier BV Authors: Mika Goto; Inoue Tomohiro; Toshiyuki Sueyoshi;This study examines the cost structure of Japanese electric power industry to investigate whether a structural reform on the industry really enhances a cost-saving benefit to consumers. A composite cost function model, using a panel data set, is used for this study. The data set consists of nine electric power companies from 1990 to 2008. Based upon the estimation results, this study examines whether economies of scale and vertical economies exist in the industry. Then, this study conducts a cost subadditivity test that is a necessary condition of natural monopoly. The empirical results indicate that the electric power firms exhibit the status of economies of scale in their transmissions and distributions and the operation as a whole. However, they do not exhibit economies of scale in their generations. Thus, the transmission operation, by integration, in a large area can improve its economic efficiency. Furthermore, the industry should introduce more competition in both generation and wholesale power markets where more firms can participate in their power trades. This study also empirically confirms that vertical economies have existed in the industry. Moreover, this study confirms that all the estimates in the cost subadditivity test satisfy the necessary condition of natural monopoly, where each estimate indicates cost saving in cost subadditivity. The test does not guarantee a sufficient condition of natural monopoly. However, it clearly indicates that the functional separation between generation and transmission will increase total production cost in the industry. The complete separation may result in a net loss of economic efficiency if a competition benefit does not exceed an expected economic loss. Consequently, this study suggests that the industrial structure of future Japanese electric power industry should be evaluated from not only an expected benefit by introducing competition but also an unbundling cost that occurs with a loss of vertical integration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.12.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.12.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 JapanPublisher:Elsevier BV Authors: Mika Goto; Inoue Tomohiro; Toshiyuki Sueyoshi;This study examines the cost structure of Japanese electric power industry to investigate whether a structural reform on the industry really enhances a cost-saving benefit to consumers. A composite cost function model, using a panel data set, is used for this study. The data set consists of nine electric power companies from 1990 to 2008. Based upon the estimation results, this study examines whether economies of scale and vertical economies exist in the industry. Then, this study conducts a cost subadditivity test that is a necessary condition of natural monopoly. The empirical results indicate that the electric power firms exhibit the status of economies of scale in their transmissions and distributions and the operation as a whole. However, they do not exhibit economies of scale in their generations. Thus, the transmission operation, by integration, in a large area can improve its economic efficiency. Furthermore, the industry should introduce more competition in both generation and wholesale power markets where more firms can participate in their power trades. This study also empirically confirms that vertical economies have existed in the industry. Moreover, this study confirms that all the estimates in the cost subadditivity test satisfy the necessary condition of natural monopoly, where each estimate indicates cost saving in cost subadditivity. The test does not guarantee a sufficient condition of natural monopoly. However, it clearly indicates that the functional separation between generation and transmission will increase total production cost in the industry. The complete separation may result in a net loss of economic efficiency if a competition benefit does not exceed an expected economic loss. Consequently, this study suggests that the industrial structure of future Japanese electric power industry should be evaluated from not only an expected benefit by introducing competition but also an unbundling cost that occurs with a loss of vertical integration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.12.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.12.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto; Manabu Sugiyama;Abstract This study discusses a new use of window analysis for DEA environmental assessment in a time horizon where DEA stands for Data Envelopment Analysis. The data sets on environmental protection are often structured by time series. In applying DEA to environmental assessment, it is necessary for us to examine a frontier shift between different periods because it indicates a technology progress on desirable and undesirable outputs. An important feature of the proposed approach is that it incorporates the concept of natural and managerial disposability into the computational framework of DEA and extends the two disposability concepts in a time horizon. To capture the frontier shift, this study proposes a new type of DEA window analysis for environmental assessment. This study applies the proposed DEA window analysis to a data set on U.S. coal-fired power plants during 1995–2007. The application finds that the coal-fired power plants have gradually paid attention to environmental protections under Clean Air Act (CAA). Consequently, their performance under managerial disposability has increased from 1996 to 2007. This indicates the importance of CAA and regulation on industrial pollutions. Thus, it is necessary for the United States to extend the scope of CAA for controlling the amount of CO2 emission because current regulation has a limited policy influence on the source of global warming and climate change in our modern society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2013.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2013.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto; Manabu Sugiyama;Abstract This study discusses a new use of window analysis for DEA environmental assessment in a time horizon where DEA stands for Data Envelopment Analysis. The data sets on environmental protection are often structured by time series. In applying DEA to environmental assessment, it is necessary for us to examine a frontier shift between different periods because it indicates a technology progress on desirable and undesirable outputs. An important feature of the proposed approach is that it incorporates the concept of natural and managerial disposability into the computational framework of DEA and extends the two disposability concepts in a time horizon. To capture the frontier shift, this study proposes a new type of DEA window analysis for environmental assessment. This study applies the proposed DEA window analysis to a data set on U.S. coal-fired power plants during 1995–2007. The application finds that the coal-fired power plants have gradually paid attention to environmental protections under Clean Air Act (CAA). Consequently, their performance under managerial disposability has increased from 1996 to 2007. This indicates the importance of CAA and regulation on industrial pollutions. Thus, it is necessary for the United States to extend the scope of CAA for controlling the amount of CO2 emission because current regulation has a limited policy influence on the source of global warming and climate change in our modern society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2013.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2013.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Reza Nadimi; Mika Goto; Koji Tokimatsu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ref.2022.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ref.2022.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Reza Nadimi; Mika Goto; Koji Tokimatsu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ref.2022.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ref.2022.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;AbstractThis study discusses a combined use of DEA (Data Environment Analysis) with SCSC (Strong Complementary Slackness Condition) and DEA–DA (Discriminant Analysis). Many studies use DEA to evaluate the performance of various organizations in private and public sectors. A conventional use of DEA is not perfect because it still contains zero in many multipliers. This implies that DEA does not fully utilize information on all inputs and outputs. As a result, DEA produces many efficient organizations. To overcome the methodological difficulty, this study proposes a new use of DEA/SCSC and DEA–DA to reduce the number of efficient organizations.
Applied Mathematics ... arrow_drop_down Applied Mathematics LettersArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Applied Mathematics LettersArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aml.2011.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Mathematics ... arrow_drop_down Applied Mathematics LettersArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Applied Mathematics LettersArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aml.2011.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;AbstractThis study discusses a combined use of DEA (Data Environment Analysis) with SCSC (Strong Complementary Slackness Condition) and DEA–DA (Discriminant Analysis). Many studies use DEA to evaluate the performance of various organizations in private and public sectors. A conventional use of DEA is not perfect because it still contains zero in many multipliers. This implies that DEA does not fully utilize information on all inputs and outputs. As a result, DEA produces many efficient organizations. To overcome the methodological difficulty, this study proposes a new use of DEA/SCSC and DEA–DA to reduce the number of efficient organizations.
Applied Mathematics ... arrow_drop_down Applied Mathematics LettersArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Applied Mathematics LettersArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aml.2011.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Mathematics ... arrow_drop_down Applied Mathematics LettersArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Applied Mathematics LettersArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aml.2011.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 JapanPublisher:MDPI AG Authors: Tomonori Miyagawa; Mika Goto;doi: 10.3390/en15124375
This study reviews the extant literature on hydrogen production cost forecasts to identify and analyze the historical trend of such forecasts in order to explore the feasibility of wider adoption. Hydrogen is an important energy source that can be used to achieve a carbon-neutral society, but the widespread adoption of hydrogen production technologies is hampered by the high costs. The production costs vary depending on the technology employed: gray, renewable electrolysis, or biomass. The study identifies 174 production cost forecast data points from articles published between 1979 and 2020 and makes a comparative assessment using non-parametric statistical tests. The results show three different cost forecast trends across technologies. First, the production cost of gray hydrogen showed an increasing trend until 2015, but started declining after 2015. Second, the renewable electrolysis hydrogen cost was the highest of all, but has shown a gradual declining trend since 2015. Finally, the biomass hydrogen cost has been relatively cheaper up until 2015, after which it became the highest. Renewable electrolysis and biomass hydrogen will be potential candidates (as principal drivers) to reduce CO2 emissions in the future, but renewable electrolysis hydrogen is more promising in this regard due to its declining production cost trend. Gray hydrogen can also be an alternative candidate to renewable electrolysis hydrogen because it can be equipped with carbon capture storage (CCS) to produce blue hydrogen, although we need to consider additional production costs incurred by the introduction of CCS. The study discusses the technological development and policy implications of the results on hydrogen production costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 JapanPublisher:MDPI AG Authors: Tomonori Miyagawa; Mika Goto;doi: 10.3390/en15124375
This study reviews the extant literature on hydrogen production cost forecasts to identify and analyze the historical trend of such forecasts in order to explore the feasibility of wider adoption. Hydrogen is an important energy source that can be used to achieve a carbon-neutral society, but the widespread adoption of hydrogen production technologies is hampered by the high costs. The production costs vary depending on the technology employed: gray, renewable electrolysis, or biomass. The study identifies 174 production cost forecast data points from articles published between 1979 and 2020 and makes a comparative assessment using non-parametric statistical tests. The results show three different cost forecast trends across technologies. First, the production cost of gray hydrogen showed an increasing trend until 2015, but started declining after 2015. Second, the renewable electrolysis hydrogen cost was the highest of all, but has shown a gradual declining trend since 2015. Finally, the biomass hydrogen cost has been relatively cheaper up until 2015, after which it became the highest. Renewable electrolysis and biomass hydrogen will be potential candidates (as principal drivers) to reduce CO2 emissions in the future, but renewable electrolysis hydrogen is more promising in this regard due to its declining production cost trend. Gray hydrogen can also be an alternative candidate to renewable electrolysis hydrogen because it can be equipped with carbon capture storage (CCS) to produce blue hydrogen, although we need to consider additional production costs incurred by the introduction of CCS. The study discusses the technological development and policy implications of the results on hydrogen production costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract Recently, many studies have applied environmental assessment based upon data envelopment analysis to measure the performance of various organizations. An important feature of the approach is that it evaluates their economic activities which use inputs to produce desirable (e.g., electricity) and undesirable (e.g., CO2 emission) outputs. To document the practicality, this study discusses the corporate sustainability of Japanese industries. In the application, we need to overcome the three methodological difficulties related to the approach at the initial stage: how to handle zero and/or negative values, how to unify inputs, desirable, and undesirable outputs within a synchronized framework, and how to identify a possible occurrence of a production limit and to identify that of green technology innovation. This study obtains the three empirical findings. First, Japanese firms put more strategic weights on their operational achievements than environmental ones. Second, manufacturing firms outperform non-manufacturing ones, including services, energy utilities and information technology industries, in their operations. Finally, the production limit may occur in most industries under current business surroundings. However, they may overcome the difficulty by investing for production or service assets and green technology. The empirical results are consistent with the current Japanese industrial policy, or so-called “Abenomics,” which centers upon the performance improvement in non-manufacturing industries. We also discuss a significant potential of green technology innovation that the Japanese government does not consider in the current policy agendas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract Recently, many studies have applied environmental assessment based upon data envelopment analysis to measure the performance of various organizations. An important feature of the approach is that it evaluates their economic activities which use inputs to produce desirable (e.g., electricity) and undesirable (e.g., CO2 emission) outputs. To document the practicality, this study discusses the corporate sustainability of Japanese industries. In the application, we need to overcome the three methodological difficulties related to the approach at the initial stage: how to handle zero and/or negative values, how to unify inputs, desirable, and undesirable outputs within a synchronized framework, and how to identify a possible occurrence of a production limit and to identify that of green technology innovation. This study obtains the three empirical findings. First, Japanese firms put more strategic weights on their operational achievements than environmental ones. Second, manufacturing firms outperform non-manufacturing ones, including services, energy utilities and information technology industries, in their operations. Finally, the production limit may occur in most industries under current business surroundings. However, they may overcome the difficulty by investing for production or service assets and green technology. The empirical results are consistent with the current Japanese industrial policy, or so-called “Abenomics,” which centers upon the performance improvement in non-manufacturing industries. We also discuss a significant potential of green technology innovation that the Japanese government does not consider in the current policy agendas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract This study proposes a use of Data Envelopment Analysis (DEA) for environmental assessment. All radial and non-radial models are discussed under natural and managerial disposability. The natural disposability implies corporate strategy by which a firm attempts to decrease an input vector to decrease a vector of undesirable outputs. Given the decreased input vector, a firm attempts to increase a vector of desirable outputs as much as possible. This type of strategy, supported by economists, indicates negative adaptation to a regulation change on undesirable outputs. In contrast, the managerial disposability indicates opposite strategy by increasing the input vector. This disposability expresses corporate strategy by which a firm considers the regulation change as a new business opportunity. A firm attempts to improve its performance by utilizing new environmental technology and/or new management. This type of strategy, supported by corporate strategists in U.S. business schools, indicates positive adaptation to the regulation change on undesirable outputs. Using the proposed DEA assessment, this study examines the relationship among energy consumption, economic development and environmental protection in Japanese prefectures. To theoretically extend the use of DEA for environmental assessment, this study incorporates Strong Complementary Slackness Conditions (SCSCs) into the proposed radial models. The incorporation of SCSCs has three methodological strengths. First, DEA/SCSCs can handle an occurrence of multiple reference sets and multiple projections. Second, the incorporation of SCSCs makes it possible to restrict dual variables (multiples) in a specific range without any prior information. Finally, DEA/SCSCs can bypass the conventional procedure (i.e., a radial model combined with an additive model) used for DEA radial measurement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract This study proposes a use of Data Envelopment Analysis (DEA) for environmental assessment. All radial and non-radial models are discussed under natural and managerial disposability. The natural disposability implies corporate strategy by which a firm attempts to decrease an input vector to decrease a vector of undesirable outputs. Given the decreased input vector, a firm attempts to increase a vector of desirable outputs as much as possible. This type of strategy, supported by economists, indicates negative adaptation to a regulation change on undesirable outputs. In contrast, the managerial disposability indicates opposite strategy by increasing the input vector. This disposability expresses corporate strategy by which a firm considers the regulation change as a new business opportunity. A firm attempts to improve its performance by utilizing new environmental technology and/or new management. This type of strategy, supported by corporate strategists in U.S. business schools, indicates positive adaptation to the regulation change on undesirable outputs. Using the proposed DEA assessment, this study examines the relationship among energy consumption, economic development and environmental protection in Japanese prefectures. To theoretically extend the use of DEA for environmental assessment, this study incorporates Strong Complementary Slackness Conditions (SCSCs) into the proposed radial models. The incorporation of SCSCs has three methodological strengths. First, DEA/SCSCs can handle an occurrence of multiple reference sets and multiple projections. Second, the incorporation of SCSCs makes it possible to restrict dual variables (multiples) in a specific range without any prior information. Finally, DEA/SCSCs can bypass the conventional procedure (i.e., a radial model combined with an additive model) used for DEA radial measurement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Springer Science and Business Media LLC Amanda Ahl; Mika Goto; Masaru Yarime; Masaru Yarime; Masaru Yarime;In light of climate change, there is pressure worldwide to curb emissions via energy efficiency, conservation, and renewable energy. Woody biomass has a role in sustainable energy transitions, contributing to emissions reduction, economic development, and energy security as a dispatchable resource. This potential is recognized globally, but the woody biomass supply chain has faced technical and social challenges. Smart technologies are increasingly discussed in discourse on supply chain management, such as their potential to improve transparency and efficiency. Despite a variety of research related to woody biomass as well as smart technologies, little attention has been given to integrating the two perspectives. This study explores this intersection by highlighting smart technologies and mechanisms by which they may contribute to overcoming challenges in the woody biomass supply chain, exemplified by the case of Japan. Based on qualitative expert interviews, exploratory results suggest potential of smart technologies that would contribute to addressing both social and technical challenges of woody biomass in Japan. These challenges include transportation infrastructure, biomass quality management, business model integration (cascading), stakeholder relationship management, and local community revitalization and socioeconomic development. This contribution is based on various mechanisms such as improved transparency, information-sharing, accountability, automation, and value maximization. The results of this paper delineate a potential future development path that integrates smart technologies, woody biomass supply chains, and sustainability goals. This is an important further consideration for energy policy in academia, industry, as well as government.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-019-00728-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-019-00728-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Springer Science and Business Media LLC Amanda Ahl; Mika Goto; Masaru Yarime; Masaru Yarime; Masaru Yarime;In light of climate change, there is pressure worldwide to curb emissions via energy efficiency, conservation, and renewable energy. Woody biomass has a role in sustainable energy transitions, contributing to emissions reduction, economic development, and energy security as a dispatchable resource. This potential is recognized globally, but the woody biomass supply chain has faced technical and social challenges. Smart technologies are increasingly discussed in discourse on supply chain management, such as their potential to improve transparency and efficiency. Despite a variety of research related to woody biomass as well as smart technologies, little attention has been given to integrating the two perspectives. This study explores this intersection by highlighting smart technologies and mechanisms by which they may contribute to overcoming challenges in the woody biomass supply chain, exemplified by the case of Japan. Based on qualitative expert interviews, exploratory results suggest potential of smart technologies that would contribute to addressing both social and technical challenges of woody biomass in Japan. These challenges include transportation infrastructure, biomass quality management, business model integration (cascading), stakeholder relationship management, and local community revitalization and socioeconomic development. This contribution is based on various mechanisms such as improved transparency, information-sharing, accountability, automation, and value maximization. The results of this paper delineate a potential future development path that integrates smart technologies, woody biomass supply chains, and sustainability goals. This is an important further consideration for energy policy in academia, industry, as well as government.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-019-00728-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-019-00728-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract This study proposes a use of Data Envelopment Analysis (DEA) for environmental assessment. All organizations in private and public sectors produce not only desirable (good) but also undesirable (bad) outputs as a result of their economic activities. The proposed use of DEA determines the level of unified (operational and environmental) efficiency of all the organizations. A contribution of this study is that it explores how to measure not only RTS (Returns to Scale) on desirable outputs but also a new concept regarding “DTS: Damages to Scale” (corresponding to RTS for undesirable outputs). This study discusses how to measure RTS under natural disposability and DTS under managerial disposability by DEA. The measurement of RTS and DTS is formulated by incorporating “Strong Complementary Slackness Conditions (SCSCs)”. As a result, this study can handle an occurrence of multiple reference sets and multiple projections in the RTS/DTS measurement. The incorporation of SCSCs makes it possible both to restrict DEA multipliers in a specific range without any prior information and to identify all possible efficient organizations as a reference set. Using the unique capabilities of SCSCs, this study discusses the use of DEA environmental assessment by exploring how to classify the type of RTS/DTS with SCSCs. Such analytical capabilities are essential, but not previously explored in DEA environmental assessment for energy industries. As an illustrative example, this study applies the proposed approach for the performance evaluation of Japanese manufacturing industries. This study finds that these firms need to introduce technology innovation to reduce an amount of greenhouse gases and wastes. The empirical result confirms the importance of measuring RTS/DTS in DEA environmental assessment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract This study proposes a use of Data Envelopment Analysis (DEA) for environmental assessment. All organizations in private and public sectors produce not only desirable (good) but also undesirable (bad) outputs as a result of their economic activities. The proposed use of DEA determines the level of unified (operational and environmental) efficiency of all the organizations. A contribution of this study is that it explores how to measure not only RTS (Returns to Scale) on desirable outputs but also a new concept regarding “DTS: Damages to Scale” (corresponding to RTS for undesirable outputs). This study discusses how to measure RTS under natural disposability and DTS under managerial disposability by DEA. The measurement of RTS and DTS is formulated by incorporating “Strong Complementary Slackness Conditions (SCSCs)”. As a result, this study can handle an occurrence of multiple reference sets and multiple projections in the RTS/DTS measurement. The incorporation of SCSCs makes it possible both to restrict DEA multipliers in a specific range without any prior information and to identify all possible efficient organizations as a reference set. Using the unique capabilities of SCSCs, this study discusses the use of DEA environmental assessment by exploring how to classify the type of RTS/DTS with SCSCs. Such analytical capabilities are essential, but not previously explored in DEA environmental assessment for energy industries. As an illustrative example, this study applies the proposed approach for the performance evaluation of Japanese manufacturing industries. This study finds that these firms need to introduce technology innovation to reduce an amount of greenhouse gases and wastes. The empirical result confirms the importance of measuring RTS/DTS in DEA environmental assessment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Mika Goto; Toshiyuki Sueyoshi;Abstract This study discusses a combined use of DEA (Data Environment Analysis) and DEA–DA (Discriminant Analysis) to determine the efficiency-based rank of energy firms. This type of performance evaluation is important because we often have a difficulty in accessing a large sample on energy firms to derive reliable empirical results. The proposed approach is useful in dealing with such a limited number of energy firms, often found in previous DEA studies on energy industries in the world. The proposed approach uses DEA to classify energy firms into efficient and inefficient groups based upon their efficiency scores. Then, it utilizes DEA–DA to assess their efficiency scores and ranks. In this stage, we can find an adjusted efficiency score for each energy firm. The proposed approach provides us with the following analytical capabilities, all of which cannot be found in a conventional use of DEA in assessing energy firms. First, the proposed DEA approach can avoid zero in all multipliers on efficient energy firms by incorporating SCSC (Strong Complementary Slackness Condition) so that it can handle an occurrence of multiple reference sets and multiple projections. The DEA result classifies all energy firms into efficient and inefficient groups. Second, DEA–DA, applied to the two groups, evaluates all energy firms by an industry-wide evaluation, not depending upon a limited number of efficient energy firms in a reference set, as found in a conventional use of DEA. The analytical capability can reduce the number of efficient energy firms. Third, the proposed approach can provide their efficiency-based ranking scores. Finally, we can conduct a rank sum test based upon their ranking scores to obtain a statistical inference. As an application, this study uses the proposed approach to examine the performance of Japanese electric power industry. We find two economic implications. One of the two implications is that no major change has occurred in the operational performance of Japanese electric power industry because of Japanese sluggish economy from 2005 to 2009. The other implication indicates that there are strategic differences in the operation of Japanese electric power firms after the liberalization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Mika Goto; Toshiyuki Sueyoshi;Abstract This study discusses a combined use of DEA (Data Environment Analysis) and DEA–DA (Discriminant Analysis) to determine the efficiency-based rank of energy firms. This type of performance evaluation is important because we often have a difficulty in accessing a large sample on energy firms to derive reliable empirical results. The proposed approach is useful in dealing with such a limited number of energy firms, often found in previous DEA studies on energy industries in the world. The proposed approach uses DEA to classify energy firms into efficient and inefficient groups based upon their efficiency scores. Then, it utilizes DEA–DA to assess their efficiency scores and ranks. In this stage, we can find an adjusted efficiency score for each energy firm. The proposed approach provides us with the following analytical capabilities, all of which cannot be found in a conventional use of DEA in assessing energy firms. First, the proposed DEA approach can avoid zero in all multipliers on efficient energy firms by incorporating SCSC (Strong Complementary Slackness Condition) so that it can handle an occurrence of multiple reference sets and multiple projections. The DEA result classifies all energy firms into efficient and inefficient groups. Second, DEA–DA, applied to the two groups, evaluates all energy firms by an industry-wide evaluation, not depending upon a limited number of efficient energy firms in a reference set, as found in a conventional use of DEA. The analytical capability can reduce the number of efficient energy firms. Third, the proposed approach can provide their efficiency-based ranking scores. Finally, we can conduct a rank sum test based upon their ranking scores to obtain a statistical inference. As an application, this study uses the proposed approach to examine the performance of Japanese electric power industry. We find two economic implications. One of the two implications is that no major change has occurred in the operational performance of Japanese electric power industry because of Japanese sluggish economy from 2005 to 2009. The other implication indicates that there are strategic differences in the operation of Japanese electric power firms after the liberalization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 JapanPublisher:Elsevier BV Authors: Mika Goto; Inoue Tomohiro; Toshiyuki Sueyoshi;This study examines the cost structure of Japanese electric power industry to investigate whether a structural reform on the industry really enhances a cost-saving benefit to consumers. A composite cost function model, using a panel data set, is used for this study. The data set consists of nine electric power companies from 1990 to 2008. Based upon the estimation results, this study examines whether economies of scale and vertical economies exist in the industry. Then, this study conducts a cost subadditivity test that is a necessary condition of natural monopoly. The empirical results indicate that the electric power firms exhibit the status of economies of scale in their transmissions and distributions and the operation as a whole. However, they do not exhibit economies of scale in their generations. Thus, the transmission operation, by integration, in a large area can improve its economic efficiency. Furthermore, the industry should introduce more competition in both generation and wholesale power markets where more firms can participate in their power trades. This study also empirically confirms that vertical economies have existed in the industry. Moreover, this study confirms that all the estimates in the cost subadditivity test satisfy the necessary condition of natural monopoly, where each estimate indicates cost saving in cost subadditivity. The test does not guarantee a sufficient condition of natural monopoly. However, it clearly indicates that the functional separation between generation and transmission will increase total production cost in the industry. The complete separation may result in a net loss of economic efficiency if a competition benefit does not exceed an expected economic loss. Consequently, this study suggests that the industrial structure of future Japanese electric power industry should be evaluated from not only an expected benefit by introducing competition but also an unbundling cost that occurs with a loss of vertical integration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.12.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.12.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 JapanPublisher:Elsevier BV Authors: Mika Goto; Inoue Tomohiro; Toshiyuki Sueyoshi;This study examines the cost structure of Japanese electric power industry to investigate whether a structural reform on the industry really enhances a cost-saving benefit to consumers. A composite cost function model, using a panel data set, is used for this study. The data set consists of nine electric power companies from 1990 to 2008. Based upon the estimation results, this study examines whether economies of scale and vertical economies exist in the industry. Then, this study conducts a cost subadditivity test that is a necessary condition of natural monopoly. The empirical results indicate that the electric power firms exhibit the status of economies of scale in their transmissions and distributions and the operation as a whole. However, they do not exhibit economies of scale in their generations. Thus, the transmission operation, by integration, in a large area can improve its economic efficiency. Furthermore, the industry should introduce more competition in both generation and wholesale power markets where more firms can participate in their power trades. This study also empirically confirms that vertical economies have existed in the industry. Moreover, this study confirms that all the estimates in the cost subadditivity test satisfy the necessary condition of natural monopoly, where each estimate indicates cost saving in cost subadditivity. The test does not guarantee a sufficient condition of natural monopoly. However, it clearly indicates that the functional separation between generation and transmission will increase total production cost in the industry. The complete separation may result in a net loss of economic efficiency if a competition benefit does not exceed an expected economic loss. Consequently, this study suggests that the industrial structure of future Japanese electric power industry should be evaluated from not only an expected benefit by introducing competition but also an unbundling cost that occurs with a loss of vertical integration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.12.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.12.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto; Manabu Sugiyama;Abstract This study discusses a new use of window analysis for DEA environmental assessment in a time horizon where DEA stands for Data Envelopment Analysis. The data sets on environmental protection are often structured by time series. In applying DEA to environmental assessment, it is necessary for us to examine a frontier shift between different periods because it indicates a technology progress on desirable and undesirable outputs. An important feature of the proposed approach is that it incorporates the concept of natural and managerial disposability into the computational framework of DEA and extends the two disposability concepts in a time horizon. To capture the frontier shift, this study proposes a new type of DEA window analysis for environmental assessment. This study applies the proposed DEA window analysis to a data set on U.S. coal-fired power plants during 1995–2007. The application finds that the coal-fired power plants have gradually paid attention to environmental protections under Clean Air Act (CAA). Consequently, their performance under managerial disposability has increased from 1996 to 2007. This indicates the importance of CAA and regulation on industrial pollutions. Thus, it is necessary for the United States to extend the scope of CAA for controlling the amount of CO2 emission because current regulation has a limited policy influence on the source of global warming and climate change in our modern society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2013.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2013.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto; Manabu Sugiyama;Abstract This study discusses a new use of window analysis for DEA environmental assessment in a time horizon where DEA stands for Data Envelopment Analysis. The data sets on environmental protection are often structured by time series. In applying DEA to environmental assessment, it is necessary for us to examine a frontier shift between different periods because it indicates a technology progress on desirable and undesirable outputs. An important feature of the proposed approach is that it incorporates the concept of natural and managerial disposability into the computational framework of DEA and extends the two disposability concepts in a time horizon. To capture the frontier shift, this study proposes a new type of DEA window analysis for environmental assessment. This study applies the proposed DEA window analysis to a data set on U.S. coal-fired power plants during 1995–2007. The application finds that the coal-fired power plants have gradually paid attention to environmental protections under Clean Air Act (CAA). Consequently, their performance under managerial disposability has increased from 1996 to 2007. This indicates the importance of CAA and regulation on industrial pollutions. Thus, it is necessary for the United States to extend the scope of CAA for controlling the amount of CO2 emission because current regulation has a limited policy influence on the source of global warming and climate change in our modern society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2013.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2013.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Reza Nadimi; Mika Goto; Koji Tokimatsu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ref.2022.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ref.2022.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Reza Nadimi; Mika Goto; Koji Tokimatsu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ref.2022.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ref.2022.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;AbstractThis study discusses a combined use of DEA (Data Environment Analysis) with SCSC (Strong Complementary Slackness Condition) and DEA–DA (Discriminant Analysis). Many studies use DEA to evaluate the performance of various organizations in private and public sectors. A conventional use of DEA is not perfect because it still contains zero in many multipliers. This implies that DEA does not fully utilize information on all inputs and outputs. As a result, DEA produces many efficient organizations. To overcome the methodological difficulty, this study proposes a new use of DEA/SCSC and DEA–DA to reduce the number of efficient organizations.
Applied Mathematics ... arrow_drop_down Applied Mathematics LettersArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Applied Mathematics LettersArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aml.2011.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Mathematics ... arrow_drop_down Applied Mathematics LettersArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Applied Mathematics LettersArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aml.2011.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;AbstractThis study discusses a combined use of DEA (Data Environment Analysis) with SCSC (Strong Complementary Slackness Condition) and DEA–DA (Discriminant Analysis). Many studies use DEA to evaluate the performance of various organizations in private and public sectors. A conventional use of DEA is not perfect because it still contains zero in many multipliers. This implies that DEA does not fully utilize information on all inputs and outputs. As a result, DEA produces many efficient organizations. To overcome the methodological difficulty, this study proposes a new use of DEA/SCSC and DEA–DA to reduce the number of efficient organizations.
Applied Mathematics ... arrow_drop_down Applied Mathematics LettersArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Applied Mathematics LettersArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aml.2011.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Mathematics ... arrow_drop_down Applied Mathematics LettersArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Applied Mathematics LettersArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aml.2011.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 JapanPublisher:MDPI AG Authors: Tomonori Miyagawa; Mika Goto;doi: 10.3390/en15124375
This study reviews the extant literature on hydrogen production cost forecasts to identify and analyze the historical trend of such forecasts in order to explore the feasibility of wider adoption. Hydrogen is an important energy source that can be used to achieve a carbon-neutral society, but the widespread adoption of hydrogen production technologies is hampered by the high costs. The production costs vary depending on the technology employed: gray, renewable electrolysis, or biomass. The study identifies 174 production cost forecast data points from articles published between 1979 and 2020 and makes a comparative assessment using non-parametric statistical tests. The results show three different cost forecast trends across technologies. First, the production cost of gray hydrogen showed an increasing trend until 2015, but started declining after 2015. Second, the renewable electrolysis hydrogen cost was the highest of all, but has shown a gradual declining trend since 2015. Finally, the biomass hydrogen cost has been relatively cheaper up until 2015, after which it became the highest. Renewable electrolysis and biomass hydrogen will be potential candidates (as principal drivers) to reduce CO2 emissions in the future, but renewable electrolysis hydrogen is more promising in this regard due to its declining production cost trend. Gray hydrogen can also be an alternative candidate to renewable electrolysis hydrogen because it can be equipped with carbon capture storage (CCS) to produce blue hydrogen, although we need to consider additional production costs incurred by the introduction of CCS. The study discusses the technological development and policy implications of the results on hydrogen production costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 JapanPublisher:MDPI AG Authors: Tomonori Miyagawa; Mika Goto;doi: 10.3390/en15124375
This study reviews the extant literature on hydrogen production cost forecasts to identify and analyze the historical trend of such forecasts in order to explore the feasibility of wider adoption. Hydrogen is an important energy source that can be used to achieve a carbon-neutral society, but the widespread adoption of hydrogen production technologies is hampered by the high costs. The production costs vary depending on the technology employed: gray, renewable electrolysis, or biomass. The study identifies 174 production cost forecast data points from articles published between 1979 and 2020 and makes a comparative assessment using non-parametric statistical tests. The results show three different cost forecast trends across technologies. First, the production cost of gray hydrogen showed an increasing trend until 2015, but started declining after 2015. Second, the renewable electrolysis hydrogen cost was the highest of all, but has shown a gradual declining trend since 2015. Finally, the biomass hydrogen cost has been relatively cheaper up until 2015, after which it became the highest. Renewable electrolysis and biomass hydrogen will be potential candidates (as principal drivers) to reduce CO2 emissions in the future, but renewable electrolysis hydrogen is more promising in this regard due to its declining production cost trend. Gray hydrogen can also be an alternative candidate to renewable electrolysis hydrogen because it can be equipped with carbon capture storage (CCS) to produce blue hydrogen, although we need to consider additional production costs incurred by the introduction of CCS. The study discusses the technological development and policy implications of the results on hydrogen production costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract Recently, many studies have applied environmental assessment based upon data envelopment analysis to measure the performance of various organizations. An important feature of the approach is that it evaluates their economic activities which use inputs to produce desirable (e.g., electricity) and undesirable (e.g., CO2 emission) outputs. To document the practicality, this study discusses the corporate sustainability of Japanese industries. In the application, we need to overcome the three methodological difficulties related to the approach at the initial stage: how to handle zero and/or negative values, how to unify inputs, desirable, and undesirable outputs within a synchronized framework, and how to identify a possible occurrence of a production limit and to identify that of green technology innovation. This study obtains the three empirical findings. First, Japanese firms put more strategic weights on their operational achievements than environmental ones. Second, manufacturing firms outperform non-manufacturing ones, including services, energy utilities and information technology industries, in their operations. Finally, the production limit may occur in most industries under current business surroundings. However, they may overcome the difficulty by investing for production or service assets and green technology. The empirical results are consistent with the current Japanese industrial policy, or so-called “Abenomics,” which centers upon the performance improvement in non-manufacturing industries. We also discuss a significant potential of green technology innovation that the Japanese government does not consider in the current policy agendas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract Recently, many studies have applied environmental assessment based upon data envelopment analysis to measure the performance of various organizations. An important feature of the approach is that it evaluates their economic activities which use inputs to produce desirable (e.g., electricity) and undesirable (e.g., CO2 emission) outputs. To document the practicality, this study discusses the corporate sustainability of Japanese industries. In the application, we need to overcome the three methodological difficulties related to the approach at the initial stage: how to handle zero and/or negative values, how to unify inputs, desirable, and undesirable outputs within a synchronized framework, and how to identify a possible occurrence of a production limit and to identify that of green technology innovation. This study obtains the three empirical findings. First, Japanese firms put more strategic weights on their operational achievements than environmental ones. Second, manufacturing firms outperform non-manufacturing ones, including services, energy utilities and information technology industries, in their operations. Finally, the production limit may occur in most industries under current business surroundings. However, they may overcome the difficulty by investing for production or service assets and green technology. The empirical results are consistent with the current Japanese industrial policy, or so-called “Abenomics,” which centers upon the performance improvement in non-manufacturing industries. We also discuss a significant potential of green technology innovation that the Japanese government does not consider in the current policy agendas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract This study proposes a use of Data Envelopment Analysis (DEA) for environmental assessment. All radial and non-radial models are discussed under natural and managerial disposability. The natural disposability implies corporate strategy by which a firm attempts to decrease an input vector to decrease a vector of undesirable outputs. Given the decreased input vector, a firm attempts to increase a vector of desirable outputs as much as possible. This type of strategy, supported by economists, indicates negative adaptation to a regulation change on undesirable outputs. In contrast, the managerial disposability indicates opposite strategy by increasing the input vector. This disposability expresses corporate strategy by which a firm considers the regulation change as a new business opportunity. A firm attempts to improve its performance by utilizing new environmental technology and/or new management. This type of strategy, supported by corporate strategists in U.S. business schools, indicates positive adaptation to the regulation change on undesirable outputs. Using the proposed DEA assessment, this study examines the relationship among energy consumption, economic development and environmental protection in Japanese prefectures. To theoretically extend the use of DEA for environmental assessment, this study incorporates Strong Complementary Slackness Conditions (SCSCs) into the proposed radial models. The incorporation of SCSCs has three methodological strengths. First, DEA/SCSCs can handle an occurrence of multiple reference sets and multiple projections. Second, the incorporation of SCSCs makes it possible to restrict dual variables (multiples) in a specific range without any prior information. Finally, DEA/SCSCs can bypass the conventional procedure (i.e., a radial model combined with an additive model) used for DEA radial measurement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 JapanPublisher:Elsevier BV Authors: Toshiyuki Sueyoshi; Mika Goto;Abstract This study proposes a use of Data Envelopment Analysis (DEA) for environmental assessment. All radial and non-radial models are discussed under natural and managerial disposability. The natural disposability implies corporate strategy by which a firm attempts to decrease an input vector to decrease a vector of undesirable outputs. Given the decreased input vector, a firm attempts to increase a vector of desirable outputs as much as possible. This type of strategy, supported by economists, indicates negative adaptation to a regulation change on undesirable outputs. In contrast, the managerial disposability indicates opposite strategy by increasing the input vector. This disposability expresses corporate strategy by which a firm considers the regulation change as a new business opportunity. A firm attempts to improve its performance by utilizing new environmental technology and/or new management. This type of strategy, supported by corporate strategists in U.S. business schools, indicates positive adaptation to the regulation change on undesirable outputs. Using the proposed DEA assessment, this study examines the relationship among energy consumption, economic development and environmental protection in Japanese prefectures. To theoretically extend the use of DEA for environmental assessment, this study incorporates Strong Complementary Slackness Conditions (SCSCs) into the proposed radial models. The incorporation of SCSCs has three methodological strengths. First, DEA/SCSCs can handle an occurrence of multiple reference sets and multiple projections. Second, the incorporation of SCSCs makes it possible to restrict dual variables (multiples) in a specific range without any prior information. Finally, DEA/SCSCs can bypass the conventional procedure (i.e., a radial model combined with an additive model) used for DEA radial measurement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2011.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Springer Science and Business Media LLC Amanda Ahl; Mika Goto; Masaru Yarime; Masaru Yarime; Masaru Yarime;In light of climate change, there is pressure worldwide to curb emissions via energy efficiency, conservation, and renewable energy. Woody biomass has a role in sustainable energy transitions, contributing to emissions reduction, economic development, and energy security as a dispatchable resource. This potential is recognized globally, but the woody biomass supply chain has faced technical and social challenges. Smart technologies are increasingly discussed in discourse on supply chain management, such as their potential to improve transparency and efficiency. Despite a variety of research related to woody biomass as well as smart technologies, little attention has been given to integrating the two perspectives. This study explores this intersection by highlighting smart technologies and mechanisms by which they may contribute to overcoming challenges in the woody biomass supply chain, exemplified by the case of Japan. Based on qualitative expert interviews, exploratory results suggest potential of smart technologies that would contribute to addressing both social and technical challenges of woody biomass in Japan. These challenges include transportation infrastructure, biomass quality management, business model integration (cascading), stakeholder relationship management, and local community revitalization and socioeconomic development. This contribution is based on various mechanisms such as improved transparency, information-sharing, accountability, automation, and value maximization. The results of this paper delineate a potential future development path that integrates smart technologies, woody biomass supply chains, and sustainability goals. This is an important further consideration for energy policy in academia, industry, as well as government.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-019-00728-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-019-00728-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Springer Science and Business Media LLC Amanda Ahl; Mika Goto; Masaru Yarime; Masaru Yarime; Masaru Yarime;In light of climate change, there is pressure worldwide to curb emissions via energy efficiency, conservation, and renewable energy. Woody biomass has a role in sustainable energy transitions, contributing to emissions reduction, economic development, and energy security as a dispatchable resource. This potential is recognized globally, but the woody biomass supply chain has faced technical and social challenges. Smart technologies are increasingly discussed in discourse on supply chain management, such as their potential to improve transparency and efficiency. Despite a variety of research related to woody biomass as well as smart technologies, little attention has been given to integrating the two perspectives. This study explores this intersection by highlighting smart technologies and mechanisms by which they may contribute to overcoming challenges in the woody biomass supply chain, exemplified by the case of Japan. Based on qualitative expert interviews, exploratory results suggest potential of smart technologies that would contribute to addressing both social and technical challenges of woody biomass in Japan. These challenges include transportation infrastructure, biomass quality management, business model integration (cascading), stakeholder relationship management, and local community revitalization and socioeconomic development. This contribution is based on various mechanisms such as improved transparency, information-sharing, accountability, automation, and value maximization. The results of this paper delineate a potential future development path that integrates smart technologies, woody biomass supply chains, and sustainability goals. This is an important further consideration for energy policy in academia, industry, as well as government.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-019-00728-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-019-00728-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu