- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Serbia, Austria, United Kingdom, Germany, Poland, Italy, Finland, Germany, Poland, Italy, Norway, Netherlands, Norway, NetherlandsPublisher:IOP Publishing Funded by:EC | eLTEREC| eLTERDirnböck, Thomas; Pröll, Gisela; Austnes, Kari; Beloica, Jelena; Beudert, Burkhard; Canullo, Roberto; De Marco, Alessandra; Fornasier, Maria Francesca; Futter, Martyn; Goergen, Klaus; Grandin, Ulf; Holmberg, Maria; Lindroos, Antti-Jussi; Mirtl, Michael; Neirynck, Johan; Pecka, Tomasz; Nieminen, Tiina Maileena; Nordbakken, Jørn-Frode; Posch, Maximilian; Reinds, Gert-Jan; Rowe, Edwin C.; Salemaa, Maija; Scheuschner, Thomas; Starlinger, Franz; Uziębło, Aldona Katarzyna; Valinia, Salar; Weldon, James; Wamelink, Wieger G.W.; Forsius, Martin;handle: 11250/2581757 , 11250/2581890 , 11581/426156 , 20.500.12128/7714
Atmospheric nitrogen (N) pollution is considered responsible for a substantial decline in plant species richness and for altered community structures in terrestrial habitats worldwide. Nitrogen affects habitats through direct toxicity, soil acidification, and in particular by favoring fast-growing species. Pressure from N pollution is decreasing in some areas. In Europe (EU28), overall emissions of NO x declined by more than 50% while NH 3 declined by less than 30% between the years 1990 and 2015, and further decreases may be achieved. The timescale over which these improvements will affect ecosystems is uncertain. Here we use 23 European forest research sites with high quality long-term data on deposition, climate, soil recovery, and understory vegetation to assess benefits of currently legislated N deposition reductions in forest understory vegetation. A dynamic soil model coupled to a statistical plant species niche model was applied with site-based climate and deposition. We use indicators of N deposition and climate warming effects such as the change in the occurrence of oligophilic, acidophilic, and cold-tolerant plant species to compare the present with projections for 2030 and 2050. The decrease in N deposition under current legislation emission (CLE) reduction targets until 2030 is not expected to result in a release from eutrophication. Albeit the model predictions show considerable uncertainty when compared with observations, they indicate that oligophilic forest understory plant species will further decrease. This result is partially due to confounding processes related to climate effects and to major decreases in sulphur deposition and consequent recovery from soil acidification, but shows that decreases in N deposition under CLE will most likely be insufficient to allow recovery from eutrophication.
NERC Open Research A... arrow_drop_down IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: Bielefeld Academic Search Engine (BASE)The Repository of the University of Silesia (RE-BUŚ)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/7714Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1088/1748-9...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2018Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2018Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsEnvironmental Research LettersArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf26b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: Bielefeld Academic Search Engine (BASE)The Repository of the University of Silesia (RE-BUŚ)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/7714Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1088/1748-9...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2018Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2018Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsEnvironmental Research LettersArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf26b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Germany, Austria, Norway, Finland, Germany, SerbiaPublisher:Elsevier BV Funded by:EC | eLTEREC| eLTERAherne, Julian; Austnes, Kari; Beloica, Jelena; De Marco, Alessandra; Dirnböck, Thomas; Fornasier, Maria Francesca; Goergen, Klaus; Futter, Martyn; Lindroos, Antti-Jussi; Krám, Pavel; Neirynck, Johan; Nieminen, Tiina Maileena; Pecka, Tomasz; Posch, Maximilian; Pröll, Gisela; Rowe, Ed C.; Scheuschner, Thomas; Schlutow, Angela; Valinia, Salar; Forsius; Martin; Holmberg, Maria;Current climate warming is expected to continue in coming decades, whereas high N deposition may stabilize, in contrast to the clear decrease in S deposition. These pressures have distinctive regional patterns and their resulting impact on soil conditions is modified by local site characteristics. We have applied the VSD+ soil dynamic model to study impacts of deposition and climate change on soil properties, using MetHyd and GrowUp as pre-processors to provide input to VSD+. The single-layer soil model VSD+ accounts for processes of organic C and N turnover, as well as charge and mass balances of elements, cation exchange and base cation weathering. We calibrated VSD+ at 26 ecosystem study sites throughout Europe using observed conditions, and simulated key soil properties: soil solution pH (pH), soil base saturation (BS) and soil organic carbon and nitrogen ratio (C:N) under projected deposition of N and S, and climate warming until 2100. The sites are forested, located in the Mediterranean, forested alpine, Atlantic, continental and boreal regions. They represent the long-term ecological research (LTER) Europe network, including sites of the ICP Forests and ICP Integrated Monitoring (IM) programmes under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), providing high quality long-term data on ecosystem response. Simulated future soil conditions improved under projected decrease in deposition and current climate conditions: higher pH, BS and C:N at 21, 16 and 12 of the sites, respectively. When climate change was included in the scenario analysis, the variability of the results increased. Climate warming resulted in higher simulated pH in most cases, and higher BS and C:N in roughly half of the cases. Especially the increase in C:N was more marked with climate warming. The study illustrates the value of LTER sites for applying models to predict soil responses to multiple environmental changes.
NERC Open Research A... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Natuur Archief (Open Nature Archive)Article . 2018Data sources: Open Natuur Archief (Open Nature Archive)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2018The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.05.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Natuur Archief (Open Nature Archive)Article . 2018Data sources: Open Natuur Archief (Open Nature Archive)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2018The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.05.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV De Marco Alessandra; Proietti Chiara; Anav Alessandro; Ciancarella Luisella; D'Elia Ilaria; Fares Silvano; Fornasier Maria Francesca; Fusaro Lina; Gualtieri Maurizio; Manes Fausto; Marchetto Aldo; Mircea Mihaela; Paoletti Elena; Piersanti Antonio; Rogora Michela; Salvati Luca; Salvatori Elisabetta; Screpanti Augusto; Vialetto Giovanni; Vitale Marcello; Leonardi Cristina;pmid: 30739052
handle: 20.500.14243/387541 , 10281/352834 , 11573/1229061 , 11393/276057
Across the 28 EU member states there were nearly half a million premature deaths in 2015 as a result of exposure to PM2.5, O3 and NO2. To set the target for air quality levels and avoid negative impacts for human and ecosystems health, the National Emission Ceilings Directive (NECD, 2016/2284/EU) sets objectives for emission reduction for SO2, NOx, NMVOCs, NH3 and PM2.5 for each Member State as percentages of reduction to be reached in 2020 and 2030 compared to the emission levels into 2005. One of the innovations of NECD is Article 9, that mentions the issue of "monitoring air pollution impacts" on ecosystems. We provide a clear picture of what is available in term of monitoring network for air pollution impacts on Italian ecosystems, summarizing what has been done to control air pollution and its effects on different ecosystems in Italy. We provide an overview of the impacts of air pollution on health of the Italian population and evaluate opportunities and implementation of Article 9 in the Italian context, as a case study beneficial for all Member States. The results showed that SO42- deposition strongly decreased in all monitoring sites in Italy over the period 1999-2017, while NO3- and NH4+ decreased more slightly. As a consequence, most of the acid-sensitive sites which underwent acidification in the 1980s partially recovered. The O3 concentration at forest sites showed a decreasing trend. Consequently, AOT40 (the metric identified to protect vegetation from ozone pollution) showed a decrease, even if values were still above the limit for forest protection (5000 ppb h-1), while PODy (flux-based metric under discussion as new European legislative standard for forest protection) showed an increase. National scale studies pointed out that PM10 and NO2 induced about 58,000 premature deaths (year 2005), due to cardiovascular and respiratory diseases. The network identified for Italy contains a good number of monitoring sites (6 for terrestrial ecosystem monitoring, 4 for water bodies monitoring and 11 for ozone impact monitoring) distributed over the territory and will produce a high number of monitored parameters for the implementation of the NECD.
IRIS Cnr arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2019.01.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 151 citations 151 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2019.01.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Serbia, Austria, United Kingdom, Germany, Poland, Italy, Finland, Germany, Poland, Italy, Norway, Netherlands, Norway, NetherlandsPublisher:IOP Publishing Funded by:EC | eLTEREC| eLTERDirnböck, Thomas; Pröll, Gisela; Austnes, Kari; Beloica, Jelena; Beudert, Burkhard; Canullo, Roberto; De Marco, Alessandra; Fornasier, Maria Francesca; Futter, Martyn; Goergen, Klaus; Grandin, Ulf; Holmberg, Maria; Lindroos, Antti-Jussi; Mirtl, Michael; Neirynck, Johan; Pecka, Tomasz; Nieminen, Tiina Maileena; Nordbakken, Jørn-Frode; Posch, Maximilian; Reinds, Gert-Jan; Rowe, Edwin C.; Salemaa, Maija; Scheuschner, Thomas; Starlinger, Franz; Uziębło, Aldona Katarzyna; Valinia, Salar; Weldon, James; Wamelink, Wieger G.W.; Forsius, Martin;handle: 11250/2581757 , 11250/2581890 , 11581/426156 , 20.500.12128/7714
Atmospheric nitrogen (N) pollution is considered responsible for a substantial decline in plant species richness and for altered community structures in terrestrial habitats worldwide. Nitrogen affects habitats through direct toxicity, soil acidification, and in particular by favoring fast-growing species. Pressure from N pollution is decreasing in some areas. In Europe (EU28), overall emissions of NO x declined by more than 50% while NH 3 declined by less than 30% between the years 1990 and 2015, and further decreases may be achieved. The timescale over which these improvements will affect ecosystems is uncertain. Here we use 23 European forest research sites with high quality long-term data on deposition, climate, soil recovery, and understory vegetation to assess benefits of currently legislated N deposition reductions in forest understory vegetation. A dynamic soil model coupled to a statistical plant species niche model was applied with site-based climate and deposition. We use indicators of N deposition and climate warming effects such as the change in the occurrence of oligophilic, acidophilic, and cold-tolerant plant species to compare the present with projections for 2030 and 2050. The decrease in N deposition under current legislation emission (CLE) reduction targets until 2030 is not expected to result in a release from eutrophication. Albeit the model predictions show considerable uncertainty when compared with observations, they indicate that oligophilic forest understory plant species will further decrease. This result is partially due to confounding processes related to climate effects and to major decreases in sulphur deposition and consequent recovery from soil acidification, but shows that decreases in N deposition under CLE will most likely be insufficient to allow recovery from eutrophication.
NERC Open Research A... arrow_drop_down IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: Bielefeld Academic Search Engine (BASE)The Repository of the University of Silesia (RE-BUŚ)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/7714Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1088/1748-9...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2018Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2018Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsEnvironmental Research LettersArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf26b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15648/1/Dirnb%C3%B6ck_2018_Environ._Res._Lett._13_125010.pdfData sources: Bielefeld Academic Search Engine (BASE)The Repository of the University of Silesia (RE-BUŚ)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/7714Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1088/1748-9...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2018Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2018Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsEnvironmental Research LettersArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf26b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Germany, Austria, Norway, Finland, Germany, SerbiaPublisher:Elsevier BV Funded by:EC | eLTEREC| eLTERAherne, Julian; Austnes, Kari; Beloica, Jelena; De Marco, Alessandra; Dirnböck, Thomas; Fornasier, Maria Francesca; Goergen, Klaus; Futter, Martyn; Lindroos, Antti-Jussi; Krám, Pavel; Neirynck, Johan; Nieminen, Tiina Maileena; Pecka, Tomasz; Posch, Maximilian; Pröll, Gisela; Rowe, Ed C.; Scheuschner, Thomas; Schlutow, Angela; Valinia, Salar; Forsius; Martin; Holmberg, Maria;Current climate warming is expected to continue in coming decades, whereas high N deposition may stabilize, in contrast to the clear decrease in S deposition. These pressures have distinctive regional patterns and their resulting impact on soil conditions is modified by local site characteristics. We have applied the VSD+ soil dynamic model to study impacts of deposition and climate change on soil properties, using MetHyd and GrowUp as pre-processors to provide input to VSD+. The single-layer soil model VSD+ accounts for processes of organic C and N turnover, as well as charge and mass balances of elements, cation exchange and base cation weathering. We calibrated VSD+ at 26 ecosystem study sites throughout Europe using observed conditions, and simulated key soil properties: soil solution pH (pH), soil base saturation (BS) and soil organic carbon and nitrogen ratio (C:N) under projected deposition of N and S, and climate warming until 2100. The sites are forested, located in the Mediterranean, forested alpine, Atlantic, continental and boreal regions. They represent the long-term ecological research (LTER) Europe network, including sites of the ICP Forests and ICP Integrated Monitoring (IM) programmes under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), providing high quality long-term data on ecosystem response. Simulated future soil conditions improved under projected decrease in deposition and current climate conditions: higher pH, BS and C:N at 21, 16 and 12 of the sites, respectively. When climate change was included in the scenario analysis, the variability of the results increased. Climate warming resulted in higher simulated pH in most cases, and higher BS and C:N in roughly half of the cases. Especially the increase in C:N was more marked with climate warming. The study illustrates the value of LTER sites for applying models to predict soil responses to multiple environmental changes.
NERC Open Research A... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Natuur Archief (Open Nature Archive)Article . 2018Data sources: Open Natuur Archief (Open Nature Archive)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2018The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.05.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Natuur Archief (Open Nature Archive)Article . 2018Data sources: Open Natuur Archief (Open Nature Archive)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2018The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.05.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV De Marco Alessandra; Proietti Chiara; Anav Alessandro; Ciancarella Luisella; D'Elia Ilaria; Fares Silvano; Fornasier Maria Francesca; Fusaro Lina; Gualtieri Maurizio; Manes Fausto; Marchetto Aldo; Mircea Mihaela; Paoletti Elena; Piersanti Antonio; Rogora Michela; Salvati Luca; Salvatori Elisabetta; Screpanti Augusto; Vialetto Giovanni; Vitale Marcello; Leonardi Cristina;pmid: 30739052
handle: 20.500.14243/387541 , 10281/352834 , 11573/1229061 , 11393/276057
Across the 28 EU member states there were nearly half a million premature deaths in 2015 as a result of exposure to PM2.5, O3 and NO2. To set the target for air quality levels and avoid negative impacts for human and ecosystems health, the National Emission Ceilings Directive (NECD, 2016/2284/EU) sets objectives for emission reduction for SO2, NOx, NMVOCs, NH3 and PM2.5 for each Member State as percentages of reduction to be reached in 2020 and 2030 compared to the emission levels into 2005. One of the innovations of NECD is Article 9, that mentions the issue of "monitoring air pollution impacts" on ecosystems. We provide a clear picture of what is available in term of monitoring network for air pollution impacts on Italian ecosystems, summarizing what has been done to control air pollution and its effects on different ecosystems in Italy. We provide an overview of the impacts of air pollution on health of the Italian population and evaluate opportunities and implementation of Article 9 in the Italian context, as a case study beneficial for all Member States. The results showed that SO42- deposition strongly decreased in all monitoring sites in Italy over the period 1999-2017, while NO3- and NH4+ decreased more slightly. As a consequence, most of the acid-sensitive sites which underwent acidification in the 1980s partially recovered. The O3 concentration at forest sites showed a decreasing trend. Consequently, AOT40 (the metric identified to protect vegetation from ozone pollution) showed a decrease, even if values were still above the limit for forest protection (5000 ppb h-1), while PODy (flux-based metric under discussion as new European legislative standard for forest protection) showed an increase. National scale studies pointed out that PM10 and NO2 induced about 58,000 premature deaths (year 2005), due to cardiovascular and respiratory diseases. The network identified for Italy contains a good number of monitoring sites (6 for terrestrial ecosystem monitoring, 4 for water bodies monitoring and 11 for ozone impact monitoring) distributed over the territory and will produce a high number of monitored parameters for the implementation of the NECD.
IRIS Cnr arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2019.01.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 151 citations 151 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2019.01.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu