- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Sweden, Sweden, France, ItalyPublisher:Springer Science and Business Media LLC Authors: Alessandro Ceci; Romain Gojon; Mihai Mihaescu;handle: 11573/1657624
Abstract The combustion noise in aero-engines is known to originate from two different sources. First, the unsteady heat release in the combustion chamber generates the direct combustion noise. Second, hot and cold spots of air generated by the combustion process are convected and accelerated by the turbine stages and give rise to the so-called indirect combustion noise. The present work targets, by using a numerical approach, the generation mechanism of indirect combustion noise for a simplified geometry of a turbine stator passage. Periodic temperature fluctuations are imposed at the inlet, permitting to simulate hot and cold packets of air coming from the unsteady combustion. Three-dimensional Large Eddy Simulation (LES) calculations are conducted for transonic operating conditions to evaluate the blade acoustic response to the forced temperature perturbations at the inlet plane. Transonic conditions are characterized by trailing edge expansion waves and shocks. It is notably shown that their movement can be excited if disturbances with a particular frequency are injected in the domain.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10494-018-9964-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 39visibility views 39 download downloads 17 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10494-018-9964-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Roberto Mosca; Mihai Mihaescu;A characteristic of radial turbines for turbocharger applications subject to pulsating flow is the deviation of the turbine performance compared with corresponding continuous flow conditions, typically associated with gas-stand experiments. The performance deviations under pulsating flow generate a hysteresis loop that encloses the performance line obtained in gas-stand conditions and their intensity is demonstrated to grow with increasing pulse amplitude and frequency. Predicting the performance deviations is of great interest to improve the predictive capabilities of reduced-order models and enhance engine-turbocharger matching.In this work, the performance response of a turbocharger radial turbine is studied with respect to variations of the normalized pulse amplitude (between 0.4 and 1.6) and the pulse frequency (between 20Hz and 100Hz). Results show that the hysteresis loop expands with increasing pulse amplitude and frequency, so that the turbine cannot be treated as a quasi-steady device. The characteristic trends of the turbine performance are also highlighted with respect to pulse amplitude and frequency variations. The expansion ratio is registered to improve by +4.0% with increasing pulse amplitude and decrease by -1.3% with increasing pulse frequency. An opposite trend is otherwise registered for the isentropic efficiency, which decreases by -6.5% for increasing pulse amplitude and increases by +6.5% for increasing pulse frequency. Finally, through a simple model, the deviations of the turbine performance from quasi-steady to pulsating flow conditions are demonstrated to depend on the time derivative of the pressure pulse and the residence time of the fluid particle rather than pulse amplitude and frequency.
Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2022.100268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2022.100268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Embargo end date: 21 Jan 2020 United KingdomPublisher:Elsevier BV Authors: Semlitsch, B; Wang, Y; Mihǎescu, M;In an internal combustion engine, the residual energy remaining after combustion in the exhaust gasses can be partially recovered by a downstream arranged device. The exhaust port represents the pa ...
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Elsevier BV Beichuan Hong; Andreas Lius; Senthil Krishnan Mahendar; Mihai Mihaescu; Andreas Cronhjort;Ethanol, as the most produced renewable biofuel, is considered a promising low-carbon alternative to petroleum-based fuels in the transport sector due to its high energy density and auto-ignition resistance. The lean-burn combustion in spark-ignition (SI) engines has the potential to further improve thermal efficiency in regard to knock mitigation and the reduction of combustion temperature. However, the characteristics of lean-burn combustion in an ethanol-fueled engine in relation to the combustion losses and the gas-exchange process remain unclear, especially for high-load operation. This study contributes with a deeper understanding of the high-load performance of an ethanol-fueled heavy-duty SI engine using lean-burn combustion. Based on the experimental results from a single-cylinder engine test, a 6-cylinder engine model is built by integrating a validated predictive combustion model to characterize the lean-burn combustion process. The engine’s thermal efficiency and combustion phasing are evaluated for knock limited operation and then compared to the theoretical optimum which is regardless of knock. The energy and exergy balances are applied to evaluate the effect of dilution with excess air ratios up to 1.8. Losses through heat transfer, exhaust flow, and incomplete combustion are quantified. In addition, entropy generated through combustion is discussed to identify the relationship between exergy destruction and different operating conditions. In the context of lean-burn combustion, the thermal efficiency at high-load operation incrementally increases from 40.4% at stoichiometric condition to 47.3% at an excess air ratio of 1.8. At the same time, the exergy destruction through combustion increases by 3.3 percentage points across the selected dilution range. Furthermore, the challenging requirements to realize lean-burn combustion with lower exhaust gas temperatures and higher intake boost pressures is assessed through an exergy analysis of the turbocharging system. QC 20230123
Applied Thermal Engi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4238309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4238309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:ASME International Authors: Anders Dahlkild; Mihai Mihaescu; Shyang Maw Lim;doi: 10.1115/1.4040852
This study was motivated by the difficulties to assess the aerothermodynamic effects of heat transfer on the performance of turbocharger turbine by only looking at the global performance parameters, and by the lack of efforts to quantify the physical mechanisms associated with heat transfer. In this study, we aimed to investigate the sensitivity of performance to heat loss, to quantify the aerothermodynamic mechanisms associated with heat transfer and to study the available energy utilization by a turbocharger turbine. Exergy analysis was performed based on the predicted three-dimensional flow field by detached eddy simulation (DES). Our study showed that at a specified mass flow rate, (1) pressure ratio drop is less sensitive to heat loss as compared to turbine power reduction, (2) turbine power drop due to heat loss is relatively insignificant as compared to the exergy lost via heat transfer and thermal irreversibilities, and (3) a single-stage turbine is not an effective machine to harvest all the available exhaust energy in the system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4040852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4040852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Laszlo Fuchs; Mihai Mihaescu; Alexander Sakowitz;Large Eddy Simulations (LES) of the flow in a T-junction are performed and analyzed in terms of mixing quality, secondary structures and flow modes. Different mass flow ratios between the two inlet ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2013.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2013.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Other literature type 2016Embargo end date: 21 Jan 2020 United KingdomPublisher:Springer International Publishing Authors: Sundström, E; Semlitsch, B; Mihăescu, M;The aim of the present investigation is to explain the differences in the compressor map by analyzing the compressible flow in two compressor designs, i.e. a small passenger car design and a sportive car design. The two different compressor designs are assessed with steady state Reynolds Averaged Navier-Stokes simulations for several operating conditions. Similar flow features are observed near optimal efficiency operating conditions when the flow field parameters are scaled properly. The present investigation elucidates the reason for the different limiting shapes of the surge line for the two compressor maps at high speed lines.
https://www.reposito... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-30602-5_57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://www.reposito... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-30602-5_57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:ASME International Authors: Anders Dahlkild; Mihai Mihaescu; Shyang Maw Lim;doi: 10.1115/1.4042301
This research was primary motivated by limited efforts to understand the effects of secondary flow and flow unsteadiness on the heat transfer and the performance of a turbocharger turbine subjected to pulsatile flow. In this study, we aimed to investigate the influence of exhaust manifold on the flow physics and the performance of its downstream components, including the effects on heat transfer, under engine-like pulsatile flow conditions. Based on the predicted results by detached eddy simulation (DES), qualitative and quantitative flow fields analyses in the scroll and the rotor's inlet were performed, in addition to the quantification of turbine performance by using the flow exergy methodology. With the specified geometry configuration and exhaust valve strategy, our study showed that (1) the exhaust manifold influences the flow field and the heat transfer in the scroll significantly and (2) although the exhaust gas blow-down disturbs the relative flow angle at rotor inlet, the consequence on the turbine power is relatively small.
Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4042301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4042301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2014Embargo end date: 20 Feb 2020 United KingdomPublisher:SAE International Semlitsch, B; Jyothishkumar, V; Mihaescu, M; Fuchs, L; Gutmark, E; Gancedo, M;Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off design operation conditions. When used, a most wide operation range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, which permits flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology on a speed-line at near optimal operation condition and near surge operation condition is investigated. A numerical study investigating the flow-field in a centrifugal compressor of an automotive turbocharger has been performed using Large Eddy Simulation. The wheel rotation is handled by the numerically expensive sliding mesh technique. In this analysis, the full compressor geometry (360 deg) is considered. Numerical solutions with and without ported shroud for a near optimal operation condition and near-surge operation condition. The flow-field of the different cases is analyzed to elucidate the functionality of the ported shroud. In agreement with previous observations, it was found that the ported shroud reduces the flow disturbances in the blade passage for all operating conditions. However, the compressor efficiency for the off-design operation condition was found to be higher without the ported shroud, supporting the findings reported recently by an experimental investigation. The computational results are validated with experimental measurements in terms of the performance parameters and available Particle Image Velocimetry data. Copyright © 2014 SAE International.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-1655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-1655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 07 Nov 2018 United KingdomPublisher:Elsevier BV Authors: Sundström, E; Semlitsch, Bernhard; Mihăescu, M;Rotating stall and surge are flow instabilities contributing to the acoustic noise generated in centrifugal compressors at low mass flow rates. Their acoustic generation mechanisms are exposed employing compressible Large Eddy Sim- ulations (LES). The LES data are used for calculating the dominant acoustic sources emerging at low mass flow rates. They give the inhomogeneous char- acter of the Ffowcs Williams and Hawkings (FW-H) wave equation. The blade loading term associated with the unsteady pressure loads developed on solid surfaces (dipole in character) is found to be the major contributor to the aerodynamically generated noise at low mass flow rates. The acoustic source due to the velocity variations and compressibility effects (quadrupole in character) as well as the acoustic source caused by the displacement of the fluid due to the accelerations of the solid surfaces (monopole in character) were found to be not as dominant. We show that the acoustic source associated with surge is generated by the pressure oscillation, which is governed by the tip leakage flow. The vortical structures of rotating stall are interacting with the impeller. These manipulate the flow incidence angles and cause thereby unsteady blade loading towards the discharge. A low-pressure sink between 4 and 6 o’clock causes a halving of the perturbation frequencies at low mass flow rates operat- ing conditions. From two point space-time cross correlation analysis based on circumferential velocity in the diffuser it was found that the rotating stall cell propagation speed increases locally in the low pressure zone under the volute tongue. It was also found that rotating stall can coexist with surge operat- ing condition, but the feature is then seen to operate over a broader frequency interval.
Journal of Sound and... arrow_drop_down Journal of Sound and VibrationArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsv.2018.07.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Sound and... arrow_drop_down Journal of Sound and VibrationArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsv.2018.07.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Sweden, Sweden, France, ItalyPublisher:Springer Science and Business Media LLC Authors: Alessandro Ceci; Romain Gojon; Mihai Mihaescu;handle: 11573/1657624
Abstract The combustion noise in aero-engines is known to originate from two different sources. First, the unsteady heat release in the combustion chamber generates the direct combustion noise. Second, hot and cold spots of air generated by the combustion process are convected and accelerated by the turbine stages and give rise to the so-called indirect combustion noise. The present work targets, by using a numerical approach, the generation mechanism of indirect combustion noise for a simplified geometry of a turbine stator passage. Periodic temperature fluctuations are imposed at the inlet, permitting to simulate hot and cold packets of air coming from the unsteady combustion. Three-dimensional Large Eddy Simulation (LES) calculations are conducted for transonic operating conditions to evaluate the blade acoustic response to the forced temperature perturbations at the inlet plane. Transonic conditions are characterized by trailing edge expansion waves and shocks. It is notably shown that their movement can be excited if disturbances with a particular frequency are injected in the domain.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10494-018-9964-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 39visibility views 39 download downloads 17 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10494-018-9964-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Roberto Mosca; Mihai Mihaescu;A characteristic of radial turbines for turbocharger applications subject to pulsating flow is the deviation of the turbine performance compared with corresponding continuous flow conditions, typically associated with gas-stand experiments. The performance deviations under pulsating flow generate a hysteresis loop that encloses the performance line obtained in gas-stand conditions and their intensity is demonstrated to grow with increasing pulse amplitude and frequency. Predicting the performance deviations is of great interest to improve the predictive capabilities of reduced-order models and enhance engine-turbocharger matching.In this work, the performance response of a turbocharger radial turbine is studied with respect to variations of the normalized pulse amplitude (between 0.4 and 1.6) and the pulse frequency (between 20Hz and 100Hz). Results show that the hysteresis loop expands with increasing pulse amplitude and frequency, so that the turbine cannot be treated as a quasi-steady device. The characteristic trends of the turbine performance are also highlighted with respect to pulse amplitude and frequency variations. The expansion ratio is registered to improve by +4.0% with increasing pulse amplitude and decrease by -1.3% with increasing pulse frequency. An opposite trend is otherwise registered for the isentropic efficiency, which decreases by -6.5% for increasing pulse amplitude and increases by +6.5% for increasing pulse frequency. Finally, through a simple model, the deviations of the turbine performance from quasi-steady to pulsating flow conditions are demonstrated to depend on the time derivative of the pressure pulse and the residence time of the fluid particle rather than pulse amplitude and frequency.
Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2022.100268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2022.100268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Embargo end date: 21 Jan 2020 United KingdomPublisher:Elsevier BV Authors: Semlitsch, B; Wang, Y; Mihǎescu, M;In an internal combustion engine, the residual energy remaining after combustion in the exhaust gasses can be partially recovered by a downstream arranged device. The exhaust port represents the pa ...
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Elsevier BV Beichuan Hong; Andreas Lius; Senthil Krishnan Mahendar; Mihai Mihaescu; Andreas Cronhjort;Ethanol, as the most produced renewable biofuel, is considered a promising low-carbon alternative to petroleum-based fuels in the transport sector due to its high energy density and auto-ignition resistance. The lean-burn combustion in spark-ignition (SI) engines has the potential to further improve thermal efficiency in regard to knock mitigation and the reduction of combustion temperature. However, the characteristics of lean-burn combustion in an ethanol-fueled engine in relation to the combustion losses and the gas-exchange process remain unclear, especially for high-load operation. This study contributes with a deeper understanding of the high-load performance of an ethanol-fueled heavy-duty SI engine using lean-burn combustion. Based on the experimental results from a single-cylinder engine test, a 6-cylinder engine model is built by integrating a validated predictive combustion model to characterize the lean-burn combustion process. The engine’s thermal efficiency and combustion phasing are evaluated for knock limited operation and then compared to the theoretical optimum which is regardless of knock. The energy and exergy balances are applied to evaluate the effect of dilution with excess air ratios up to 1.8. Losses through heat transfer, exhaust flow, and incomplete combustion are quantified. In addition, entropy generated through combustion is discussed to identify the relationship between exergy destruction and different operating conditions. In the context of lean-burn combustion, the thermal efficiency at high-load operation incrementally increases from 40.4% at stoichiometric condition to 47.3% at an excess air ratio of 1.8. At the same time, the exergy destruction through combustion increases by 3.3 percentage points across the selected dilution range. Furthermore, the challenging requirements to realize lean-burn combustion with lower exhaust gas temperatures and higher intake boost pressures is assessed through an exergy analysis of the turbocharging system. QC 20230123
Applied Thermal Engi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4238309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4238309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:ASME International Authors: Anders Dahlkild; Mihai Mihaescu; Shyang Maw Lim;doi: 10.1115/1.4040852
This study was motivated by the difficulties to assess the aerothermodynamic effects of heat transfer on the performance of turbocharger turbine by only looking at the global performance parameters, and by the lack of efforts to quantify the physical mechanisms associated with heat transfer. In this study, we aimed to investigate the sensitivity of performance to heat loss, to quantify the aerothermodynamic mechanisms associated with heat transfer and to study the available energy utilization by a turbocharger turbine. Exergy analysis was performed based on the predicted three-dimensional flow field by detached eddy simulation (DES). Our study showed that at a specified mass flow rate, (1) pressure ratio drop is less sensitive to heat loss as compared to turbine power reduction, (2) turbine power drop due to heat loss is relatively insignificant as compared to the exergy lost via heat transfer and thermal irreversibilities, and (3) a single-stage turbine is not an effective machine to harvest all the available exhaust energy in the system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4040852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4040852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Laszlo Fuchs; Mihai Mihaescu; Alexander Sakowitz;Large Eddy Simulations (LES) of the flow in a T-junction are performed and analyzed in terms of mixing quality, secondary structures and flow modes. Different mass flow ratios between the two inlet ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2013.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2013.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Other literature type 2016Embargo end date: 21 Jan 2020 United KingdomPublisher:Springer International Publishing Authors: Sundström, E; Semlitsch, B; Mihăescu, M;The aim of the present investigation is to explain the differences in the compressor map by analyzing the compressible flow in two compressor designs, i.e. a small passenger car design and a sportive car design. The two different compressor designs are assessed with steady state Reynolds Averaged Navier-Stokes simulations for several operating conditions. Similar flow features are observed near optimal efficiency operating conditions when the flow field parameters are scaled properly. The present investigation elucidates the reason for the different limiting shapes of the surge line for the two compressor maps at high speed lines.
https://www.reposito... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-30602-5_57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://www.reposito... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-30602-5_57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:ASME International Authors: Anders Dahlkild; Mihai Mihaescu; Shyang Maw Lim;doi: 10.1115/1.4042301
This research was primary motivated by limited efforts to understand the effects of secondary flow and flow unsteadiness on the heat transfer and the performance of a turbocharger turbine subjected to pulsatile flow. In this study, we aimed to investigate the influence of exhaust manifold on the flow physics and the performance of its downstream components, including the effects on heat transfer, under engine-like pulsatile flow conditions. Based on the predicted results by detached eddy simulation (DES), qualitative and quantitative flow fields analyses in the scroll and the rotor's inlet were performed, in addition to the quantification of turbine performance by using the flow exergy methodology. With the specified geometry configuration and exhaust valve strategy, our study showed that (1) the exhaust manifold influences the flow field and the heat transfer in the scroll significantly and (2) although the exhaust gas blow-down disturbs the relative flow angle at rotor inlet, the consequence on the turbine power is relatively small.
Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4042301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4042301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2014Embargo end date: 20 Feb 2020 United KingdomPublisher:SAE International Semlitsch, B; Jyothishkumar, V; Mihaescu, M; Fuchs, L; Gutmark, E; Gancedo, M;Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off design operation conditions. When used, a most wide operation range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, which permits flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology on a speed-line at near optimal operation condition and near surge operation condition is investigated. A numerical study investigating the flow-field in a centrifugal compressor of an automotive turbocharger has been performed using Large Eddy Simulation. The wheel rotation is handled by the numerically expensive sliding mesh technique. In this analysis, the full compressor geometry (360 deg) is considered. Numerical solutions with and without ported shroud for a near optimal operation condition and near-surge operation condition. The flow-field of the different cases is analyzed to elucidate the functionality of the ported shroud. In agreement with previous observations, it was found that the ported shroud reduces the flow disturbances in the blade passage for all operating conditions. However, the compressor efficiency for the off-design operation condition was found to be higher without the ported shroud, supporting the findings reported recently by an experimental investigation. The computational results are validated with experimental measurements in terms of the performance parameters and available Particle Image Velocimetry data. Copyright © 2014 SAE International.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-1655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-1655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 07 Nov 2018 United KingdomPublisher:Elsevier BV Authors: Sundström, E; Semlitsch, Bernhard; Mihăescu, M;Rotating stall and surge are flow instabilities contributing to the acoustic noise generated in centrifugal compressors at low mass flow rates. Their acoustic generation mechanisms are exposed employing compressible Large Eddy Sim- ulations (LES). The LES data are used for calculating the dominant acoustic sources emerging at low mass flow rates. They give the inhomogeneous char- acter of the Ffowcs Williams and Hawkings (FW-H) wave equation. The blade loading term associated with the unsteady pressure loads developed on solid surfaces (dipole in character) is found to be the major contributor to the aerodynamically generated noise at low mass flow rates. The acoustic source due to the velocity variations and compressibility effects (quadrupole in character) as well as the acoustic source caused by the displacement of the fluid due to the accelerations of the solid surfaces (monopole in character) were found to be not as dominant. We show that the acoustic source associated with surge is generated by the pressure oscillation, which is governed by the tip leakage flow. The vortical structures of rotating stall are interacting with the impeller. These manipulate the flow incidence angles and cause thereby unsteady blade loading towards the discharge. A low-pressure sink between 4 and 6 o’clock causes a halving of the perturbation frequencies at low mass flow rates operat- ing conditions. From two point space-time cross correlation analysis based on circumferential velocity in the diffuser it was found that the rotating stall cell propagation speed increases locally in the low pressure zone under the volute tongue. It was also found that rotating stall can coexist with surge operat- ing condition, but the feature is then seen to operate over a broader frequency interval.
Journal of Sound and... arrow_drop_down Journal of Sound and VibrationArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsv.2018.07.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Sound and... arrow_drop_down Journal of Sound and VibrationArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsv.2018.07.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu