- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Cambridge University Press (CUP) doi: 10.1017/jfm.2017.125
The drainage of a viscous gravity current into a deep porous medium driven by both the gravitational and capillary forces is considered in two steps. We first study the one-dimensional case where a layer of fluid drains vertically into an infinitely deep porous medium. We determine a transition from the capillary-driven regime to the gravity-driven regime as time proceeds. Second, we solve the coupled spreading and drainage problem. There are no self-similar solutions of the problem for the entire time period, so asymptotic analyses are developed for the height, depth and front location in both the early-time and the late-time periods. In addition, we present numerical results of the governing partial differential equations, which agree well with the self-similar solutions in the appropriate asymptotic limits.
Journal of Fluid Mec... arrow_drop_down Journal of Fluid MechanicsArticle . 2017 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2017.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down Journal of Fluid MechanicsArticle . 2017 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2017.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu