- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, France, Italy, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | IceCommunities, EC | Biodiversa-plusEC| IceCommunities ,EC| Biodiversa-plusIsabel Cantera; Alexis Carteron; Alessia Guerrieri; Silvio Marta; Aurélie Bonin; Roberto Ambrosini; Fabien Anthelme; R. Azzoni; Peter C. Almond; Pablo Alviz Gazitúa; Sophie Cauvy‐Fraunié; Jorge Ceballos Lievano; Pritam Chand; Milap Chand Sarma; John J. Clague; Justiniano Alejo Cochachín Rapre; Chiara Compostella; Rolando Cruz Encarnación; Olivier Dangles; André Eger; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Sigmund Hâgvar; Norine Khedim; Rosa Isela Meneses; Gwendolyn Peyre; Francesca Pittino; Antoine Rabatel; Nurai Urseitova; Yan Yang; Vitalii Zaginaev; Andrea Zerboni; Anaïs Zimmer; Pierre Taberlet; Guglielmina Diolaiuti; Jérôme Poulenard; Wilfried Thuiller; Marco Caccianiga; Francesco Ficetola;doi: 10.21203/rs.3.rs-2482972/v1 , 10.1038/s41477-023-01609-4 , 10.60692/3ybwd-88374 , 10.60692/nwsah-ppr46
pmid: 38233559
handle: 20.500.14243/481324 , 2434/1040895 , 10281/459720
doi: 10.21203/rs.3.rs-2482972/v1 , 10.1038/s41477-023-01609-4 , 10.60692/3ybwd-88374 , 10.60692/nwsah-ppr46
pmid: 38233559
handle: 20.500.14243/481324 , 2434/1040895 , 10281/459720
Abstract Mechanisms underlying plant succession remain highly debated. A global quantification of the relative importance of species addition versus replacement is lacking due to the local scope of most studies. We quantified their role in the variation of plant communities colonizing the forelands of 46 retreating glaciers distributed worldwide, using both environmental DNA and traditional surveys. Both mechanisms concur in determining community changes over time but their relative importance varied over time along successions. Taxa addition predominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. Those changes were aligned with total beta-diversity changes, which were larger between early successional communities than between late-successional communities (>50 years since glacier retreat). Despite the complexity of community assembly over plant succession, our global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early successional communities to a predominance of competition later on.
Archivio Istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2482972/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2482972/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, Italy, Norway, Norway, France, New Zealand, Italy, Italy, ItalyPublisher:Wiley Funded by:EC | IceCommunities, EC | Biodiversa-plusEC| IceCommunities ,EC| Biodiversa-plusGuerrieri, Alessia; Cantera, Isabel; Marta, Silvio; Bonin, Aurélie; Carteron, Alexis; Ambrosini, Roberto; Caccianiga, Marco; Anthelme, Fabien; Azzoni, Roberto Sergio; Almond, Peter; Alviz Gazitúa, Pablo; Cauvy-Fraunié, Sophie; Ceballos Lievano, Jorge Luis; Chand, Pritam; Chand Sharma, Milap; Clague, John; Cochachín Rapre, Justiniano Alejo; Compostella, Chiara; Cruz Encarnación, Rolando; Dangles, Olivier; Deline, Philip; Eger, Andre; Erokhin, Sergey; Franzetti, Andrea; Gielly, Ludovic; Gili, Fabrizio; Gobbi, Mauro; Hågvar, Sigmund; Khedim, Norine; Meneses, Rosa Isela; Peyre, Gwendolyn; Pittino, Francesca; Proietto, Angela; Rabatel, Antoine; Urseitova, Nurai; Yang, Yan; Zaginaev, Vitalii; Zerboni, Andrea; Zimmer, Anaïs; Taberlet, Pierre; Diolaiuti, Guglielmina Adele; Poulenard, Jerome; Fontaneto, Diego; Thuiller, Wilfried; Ficetola, Gentile Francesco;doi: 10.1111/gcb.17057
pmid: 38273541
handle: 20.500.14243/451512 , 2434/1029848 , 10281/459724 , 11250/3145509 , 10182/18203
doi: 10.1111/gcb.17057
pmid: 38273541
handle: 20.500.14243/451512 , 2434/1029848 , 10281/459724 , 11250/3145509 , 10182/18203
AbstractThe worldwide retreat of glaciers is causing a faster than ever increase in ice‐free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global‐scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice‐free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r‐ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K‐ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.
IRIS Cnr arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.17057Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Munin - Open Research ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.17057Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Munin - Open Research ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, France, Italy, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | IceCommunities, EC | Biodiversa-plusEC| IceCommunities ,EC| Biodiversa-plusIsabel Cantera; Alexis Carteron; Alessia Guerrieri; Silvio Marta; Aurélie Bonin; Roberto Ambrosini; Fabien Anthelme; R. Azzoni; Peter C. Almond; Pablo Alviz Gazitúa; Sophie Cauvy‐Fraunié; Jorge Ceballos Lievano; Pritam Chand; Milap Chand Sarma; John J. Clague; Justiniano Alejo Cochachín Rapre; Chiara Compostella; Rolando Cruz Encarnación; Olivier Dangles; André Eger; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Sigmund Hâgvar; Norine Khedim; Rosa Isela Meneses; Gwendolyn Peyre; Francesca Pittino; Antoine Rabatel; Nurai Urseitova; Yan Yang; Vitalii Zaginaev; Andrea Zerboni; Anaïs Zimmer; Pierre Taberlet; Guglielmina Diolaiuti; Jérôme Poulenard; Wilfried Thuiller; Marco Caccianiga; Francesco Ficetola;doi: 10.21203/rs.3.rs-2482972/v1 , 10.1038/s41477-023-01609-4 , 10.60692/3ybwd-88374 , 10.60692/nwsah-ppr46
pmid: 38233559
handle: 20.500.14243/481324 , 2434/1040895 , 10281/459720
doi: 10.21203/rs.3.rs-2482972/v1 , 10.1038/s41477-023-01609-4 , 10.60692/3ybwd-88374 , 10.60692/nwsah-ppr46
pmid: 38233559
handle: 20.500.14243/481324 , 2434/1040895 , 10281/459720
Abstract Mechanisms underlying plant succession remain highly debated. A global quantification of the relative importance of species addition versus replacement is lacking due to the local scope of most studies. We quantified their role in the variation of plant communities colonizing the forelands of 46 retreating glaciers distributed worldwide, using both environmental DNA and traditional surveys. Both mechanisms concur in determining community changes over time but their relative importance varied over time along successions. Taxa addition predominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. Those changes were aligned with total beta-diversity changes, which were larger between early successional communities than between late-successional communities (>50 years since glacier retreat). Despite the complexity of community assembly over plant succession, our global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early successional communities to a predominance of competition later on.
Archivio Istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2482972/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2482972/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, Italy, Norway, Norway, France, New Zealand, Italy, Italy, ItalyPublisher:Wiley Funded by:EC | IceCommunities, EC | Biodiversa-plusEC| IceCommunities ,EC| Biodiversa-plusGuerrieri, Alessia; Cantera, Isabel; Marta, Silvio; Bonin, Aurélie; Carteron, Alexis; Ambrosini, Roberto; Caccianiga, Marco; Anthelme, Fabien; Azzoni, Roberto Sergio; Almond, Peter; Alviz Gazitúa, Pablo; Cauvy-Fraunié, Sophie; Ceballos Lievano, Jorge Luis; Chand, Pritam; Chand Sharma, Milap; Clague, John; Cochachín Rapre, Justiniano Alejo; Compostella, Chiara; Cruz Encarnación, Rolando; Dangles, Olivier; Deline, Philip; Eger, Andre; Erokhin, Sergey; Franzetti, Andrea; Gielly, Ludovic; Gili, Fabrizio; Gobbi, Mauro; Hågvar, Sigmund; Khedim, Norine; Meneses, Rosa Isela; Peyre, Gwendolyn; Pittino, Francesca; Proietto, Angela; Rabatel, Antoine; Urseitova, Nurai; Yang, Yan; Zaginaev, Vitalii; Zerboni, Andrea; Zimmer, Anaïs; Taberlet, Pierre; Diolaiuti, Guglielmina Adele; Poulenard, Jerome; Fontaneto, Diego; Thuiller, Wilfried; Ficetola, Gentile Francesco;doi: 10.1111/gcb.17057
pmid: 38273541
handle: 20.500.14243/451512 , 2434/1029848 , 10281/459724 , 11250/3145509 , 10182/18203
doi: 10.1111/gcb.17057
pmid: 38273541
handle: 20.500.14243/451512 , 2434/1029848 , 10281/459724 , 11250/3145509 , 10182/18203
AbstractThe worldwide retreat of glaciers is causing a faster than ever increase in ice‐free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global‐scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice‐free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r‐ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K‐ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.
IRIS Cnr arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.17057Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Munin - Open Research ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.17057Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2024Full-Text: https://hal.science/hal-04381078Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Munin - Open Research ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu