- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Norway, Norway, Germany, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSD.P. Connelly; J.M. Bull; A. Flohr; A. Schaap; D. Koopmans; J.C. Blackford; P.R. White; R.H. James; C. Pearce; A. Lichtschlag; E.P. Achterberg; D. de Beer; B. Roche; J. Li; K. Saw; G. Alendal; H. Avlesen; R. Brown; S.M. Borisov; C. Böttner; P.W. Cazenave; B. Chen; A.W. Dale; M. Dean; M. Dewar; M. Esposito; J. Gros; R. Hanz; M. Haeckel; B. Hosking; V. Huvenne; J. Karstens; T. Le Bas; T.G. Leighton; P. Linke; S. Loucaides; J.M. Matter; S. Monk; M.C. Mowlem; A. Oleynik; A.M. Omar; K. Peel; G. Provenzano; U. Saleem; M. Schmidt; B. Schramm; S. Sommer; J. Strong; I. Falcon Suarez; B. Ungerboeck; S. Widdicombe; H. Wright; E. Yakushev;handle: 11250/3023870 , 11250/3025167
Highlights • An artificial CO2 release demonstrated MMV techniques for offshore CCS. • Detection of leakage was demonstrated using acoustic, chemical and physical approaches. • Attribution of leakage was proved possible using artificial and natural tracer compounds. • Leakage quantification was possible using approaches not previously applied to CCS studies. • Non-catastrophic leaks were detected at levels below those that would cause environmental harm. Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 134visibility views 134 download downloads 61 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSAnita Flohr; Juerg M. Matter; Rachael H. James; Kevin Saw; Robin Brown; Jonas Gros; Stephanie Flude; Christopher Day; Kate Peel; Douglas Connelly; Christopher R. Pearce; James A. Strong; Anna Lichtschlag; Darren J. Hillegonds; Christopher J. Ballentine; Rebecca L. Tyne;Abstract To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
OceanRep arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 50visibility views 50 download downloads 53 Powered bymore_vert OceanRep arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSStefan Sommer; María Martínez-Cabanas; Klaus Wallmann; Kevin Saw; Anita Flohr; Anita Flohr; Jack Triest; Andrew W. Dale; Dirk Koopmans; Jonathan M. Bull; Joseph Fone; Ben Roche; Robin Brown; Jonas Gros; Peter Linke; James A. Strong; Mark Schmidt; Mario Esposito; Saskia Dötsch;Abstract According to many prognostic scenarios by the Intergovernmental Panel on Climate Change (IPCC), a scaling-up of carbon dioxide (CO2) capture and storage (CCS) by several orders-of-magnitude is necessary to meet the target of ≤2 °C global warming by 2100 relative to preindustrial levels. Since a large fraction of the predicted CO2 storage capacity lies offshore, there is a pressing need to develop field-tested methods to detect and quantify potential leaks in the marine environment. Here, we combine field measurements with numerical models to determine the flow rate of a controlled release of CO2 in a shallow marine setting at about 119 m water depth in the North Sea. In this experiment, CO2 was injected into the sediment at 3 m depth at 143 kg d-1. The new leakage monitoring tool predicts that 91 kg d-1 of CO2 escaped across the seafloor, and that 51 kg d-1 of CO2 were retained in the sediment, in agreement with independent field estimates. The new approach relies mostly on field data collected from ship-deployed technology (towed sensors, Acoustic Doppler current profiler—ADCP), which makes it a promising tool to monitor existing and upcoming offshore CO2 storage sites and to detect and quantify potential CO2 leakage.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 57 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, Norway, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCS, RCN | Bayesian monitoring desig..., UKRI | SPITFIRE - the Southampto... +2 projectsEC| STEMM-CCS ,RCN| Bayesian monitoring design. ,UKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the Environment ,UKRI| Carbonate Chemistry Autonomous Sensor System (CarCASS) ,UKRI| Marine LTSS: Climate Linked Atlantic Sector ScienceSteve Widdicombe; Elke Kossel; Stefan Sommer; Matthew C. Mowlem; Matthew C. Mowlem; María Martínez-Cabanas; Umer Saleem; Matthias Haeckel; Jianghui Li; Mark Schmidt; Amine Gana; Kevin Saw; Marius Dewar; Marius Dewar; Dirk Koopmans; Anna Oleynik; Jan P. Fischer; Christoph Böttner; Jonathan M. Bull; C. M. Sands; Jack Triest; Ben Roche; Juerg M. Matter; Hannah L. Wright; David Paxton; Anita Flohr; Anita Flohr; Dirk de Beer; Henry A. Ruhl; Henry A. Ruhl; Jerry Blackford; Robert Euan Wilson; Eric P. Achterberg; Birgit Ungerböck; Saskia Elsen; John Walk; Brett Hosking; Marcella Dean; Rachael H. James; Rudolf Hanz; Jennifer M. Durden; Christian Berndt; Veerle A.I. Huvenne; Sergey M. Borisov; Peter Linke; Allison Schaap; Socratis Loucaides; Moritz Holtappels; Timothy G. Leighton; Christian Deusner; Guttorm Alendal; Stathys Papadimitriou; Paul R. White; Mario Esposito; Anna Lichtschlag; Martin Arundell; Liam Carter; Jonas Gros; Christopher R. Pearce; Kate Peel; Baixin Chen; Robin Brown; Michael Faggetter; Thomas Mesher; James Wyatt; James Asa Strong; Samuel Monk; Samuel Monk; Andrew W. Dale; Douglas P. Connelly;handle: 11250/2992008
Abstract Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
OceanRep arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 103visibility views 103 download downloads 116 Powered bymore_vert OceanRep arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Norway, Norway, Germany, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSD.P. Connelly; J.M. Bull; A. Flohr; A. Schaap; D. Koopmans; J.C. Blackford; P.R. White; R.H. James; C. Pearce; A. Lichtschlag; E.P. Achterberg; D. de Beer; B. Roche; J. Li; K. Saw; G. Alendal; H. Avlesen; R. Brown; S.M. Borisov; C. Böttner; P.W. Cazenave; B. Chen; A.W. Dale; M. Dean; M. Dewar; M. Esposito; J. Gros; R. Hanz; M. Haeckel; B. Hosking; V. Huvenne; J. Karstens; T. Le Bas; T.G. Leighton; P. Linke; S. Loucaides; J.M. Matter; S. Monk; M.C. Mowlem; A. Oleynik; A.M. Omar; K. Peel; G. Provenzano; U. Saleem; M. Schmidt; B. Schramm; S. Sommer; J. Strong; I. Falcon Suarez; B. Ungerboeck; S. Widdicombe; H. Wright; E. Yakushev;handle: 11250/3023870 , 11250/3025167
Highlights • An artificial CO2 release demonstrated MMV techniques for offshore CCS. • Detection of leakage was demonstrated using acoustic, chemical and physical approaches. • Attribution of leakage was proved possible using artificial and natural tracer compounds. • Leakage quantification was possible using approaches not previously applied to CCS studies. • Non-catastrophic leaks were detected at levels below those that would cause environmental harm. Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 134visibility views 134 download downloads 61 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSAnita Flohr; Juerg M. Matter; Rachael H. James; Kevin Saw; Robin Brown; Jonas Gros; Stephanie Flude; Christopher Day; Kate Peel; Douglas Connelly; Christopher R. Pearce; James A. Strong; Anna Lichtschlag; Darren J. Hillegonds; Christopher J. Ballentine; Rebecca L. Tyne;Abstract To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
OceanRep arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 50visibility views 50 download downloads 53 Powered bymore_vert OceanRep arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSStefan Sommer; María Martínez-Cabanas; Klaus Wallmann; Kevin Saw; Anita Flohr; Anita Flohr; Jack Triest; Andrew W. Dale; Dirk Koopmans; Jonathan M. Bull; Joseph Fone; Ben Roche; Robin Brown; Jonas Gros; Peter Linke; James A. Strong; Mark Schmidt; Mario Esposito; Saskia Dötsch;Abstract According to many prognostic scenarios by the Intergovernmental Panel on Climate Change (IPCC), a scaling-up of carbon dioxide (CO2) capture and storage (CCS) by several orders-of-magnitude is necessary to meet the target of ≤2 °C global warming by 2100 relative to preindustrial levels. Since a large fraction of the predicted CO2 storage capacity lies offshore, there is a pressing need to develop field-tested methods to detect and quantify potential leaks in the marine environment. Here, we combine field measurements with numerical models to determine the flow rate of a controlled release of CO2 in a shallow marine setting at about 119 m water depth in the North Sea. In this experiment, CO2 was injected into the sediment at 3 m depth at 143 kg d-1. The new leakage monitoring tool predicts that 91 kg d-1 of CO2 escaped across the seafloor, and that 51 kg d-1 of CO2 were retained in the sediment, in agreement with independent field estimates. The new approach relies mostly on field data collected from ship-deployed technology (towed sensors, Acoustic Doppler current profiler—ADCP), which makes it a promising tool to monitor existing and upcoming offshore CO2 storage sites and to detect and quantify potential CO2 leakage.
OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 57 Powered bymore_vert OceanRep arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, Norway, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCS, RCN | Bayesian monitoring desig..., UKRI | SPITFIRE - the Southampto... +2 projectsEC| STEMM-CCS ,RCN| Bayesian monitoring design. ,UKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the Environment ,UKRI| Carbonate Chemistry Autonomous Sensor System (CarCASS) ,UKRI| Marine LTSS: Climate Linked Atlantic Sector ScienceSteve Widdicombe; Elke Kossel; Stefan Sommer; Matthew C. Mowlem; Matthew C. Mowlem; María Martínez-Cabanas; Umer Saleem; Matthias Haeckel; Jianghui Li; Mark Schmidt; Amine Gana; Kevin Saw; Marius Dewar; Marius Dewar; Dirk Koopmans; Anna Oleynik; Jan P. Fischer; Christoph Böttner; Jonathan M. Bull; C. M. Sands; Jack Triest; Ben Roche; Juerg M. Matter; Hannah L. Wright; David Paxton; Anita Flohr; Anita Flohr; Dirk de Beer; Henry A. Ruhl; Henry A. Ruhl; Jerry Blackford; Robert Euan Wilson; Eric P. Achterberg; Birgit Ungerböck; Saskia Elsen; John Walk; Brett Hosking; Marcella Dean; Rachael H. James; Rudolf Hanz; Jennifer M. Durden; Christian Berndt; Veerle A.I. Huvenne; Sergey M. Borisov; Peter Linke; Allison Schaap; Socratis Loucaides; Moritz Holtappels; Timothy G. Leighton; Christian Deusner; Guttorm Alendal; Stathys Papadimitriou; Paul R. White; Mario Esposito; Anna Lichtschlag; Martin Arundell; Liam Carter; Jonas Gros; Christopher R. Pearce; Kate Peel; Baixin Chen; Robin Brown; Michael Faggetter; Thomas Mesher; James Wyatt; James Asa Strong; Samuel Monk; Samuel Monk; Andrew W. Dale; Douglas P. Connelly;handle: 11250/2992008
Abstract Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
OceanRep arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 103visibility views 103 download downloads 116 Powered bymore_vert OceanRep arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu