- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Francesco Parrino; Massimiliano D’Arienzo; Silvia Mostoni; Sandra Dirè; Riccardo Ceccato; Marianna Bellardita; Leonardo Palmisano;pmid: 34786587
Photocatalytic chemical transformations in the presence of irradiated TiO2 are generally considered in terms of interfacial electron transfer. However, more elusive energy-transfer-driven reactions have been also hypothesized to occur, mainly on the basis of the indirect evidence of detected reaction products whose existence could not be justified simply by electron transfer. Unlike in homogeneous and colloidal systems, where energy transfer mechanisms have been investigated deeply for several organic syntheses, understanding of similar processes in heterogeneous systems is at only a nascent level. However, this gap of knowledge can be filled by considering the important achievements of synthetic heterogeneous photocatalysis, which bring the field closer to industrial exploitation. The present manuscript summarizes the main findings of previous literature reports and, also on the basis of some novel experimental evidences, tentatively proposes that the energy transfer in TiO2 photocatalysis could possess a Förster-like nature.
Topics in Current Ch... arrow_drop_down Topics in Current ChemistryArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41061-021-00358-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Topics in Current Ch... arrow_drop_down Topics in Current ChemistryArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41061-021-00358-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Francesco Parrino; Massimiliano D’Arienzo; Silvia Mostoni; Sandra Dirè; Riccardo Ceccato; Marianna Bellardita; Leonardo Palmisano;pmid: 34786587
Photocatalytic chemical transformations in the presence of irradiated TiO2 are generally considered in terms of interfacial electron transfer. However, more elusive energy-transfer-driven reactions have been also hypothesized to occur, mainly on the basis of the indirect evidence of detected reaction products whose existence could not be justified simply by electron transfer. Unlike in homogeneous and colloidal systems, where energy transfer mechanisms have been investigated deeply for several organic syntheses, understanding of similar processes in heterogeneous systems is at only a nascent level. However, this gap of knowledge can be filled by considering the important achievements of synthetic heterogeneous photocatalysis, which bring the field closer to industrial exploitation. The present manuscript summarizes the main findings of previous literature reports and, also on the basis of some novel experimental evidences, tentatively proposes that the energy transfer in TiO2 photocatalysis could possess a Förster-like nature.
Topics in Current Ch... arrow_drop_down Topics in Current ChemistryArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41061-021-00358-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Topics in Current Ch... arrow_drop_down Topics in Current ChemistryArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41061-021-00358-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu